Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * raid1.c : Multiple Devices driver for Linux |
| 3 | * |
| 4 | * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat |
| 5 | * |
| 6 | * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman |
| 7 | * |
| 8 | * RAID-1 management functions. |
| 9 | * |
| 10 | * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 |
| 11 | * |
| 12 | * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> |
| 13 | * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> |
| 14 | * |
| 15 | * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support |
| 16 | * bitmapped intelligence in resync: |
| 17 | * |
| 18 | * - bitmap marked during normal i/o |
| 19 | * - bitmap used to skip nondirty blocks during sync |
| 20 | * |
| 21 | * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: |
| 22 | * - persistent bitmap code |
| 23 | * |
| 24 | * This program is free software; you can redistribute it and/or modify |
| 25 | * it under the terms of the GNU General Public License as published by |
| 26 | * the Free Software Foundation; either version 2, or (at your option) |
| 27 | * any later version. |
| 28 | * |
| 29 | * You should have received a copy of the GNU General Public License |
| 30 | * (for example /usr/src/linux/COPYING); if not, write to the Free |
| 31 | * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 32 | */ |
| 33 | |
| 34 | #include <linux/slab.h> |
| 35 | #include <linux/delay.h> |
| 36 | #include <linux/blkdev.h> |
| 37 | #include <linux/module.h> |
| 38 | #include <linux/seq_file.h> |
| 39 | #include <linux/ratelimit.h> |
| 40 | #include "md.h" |
| 41 | #include "raid1.h" |
| 42 | #include "bitmap.h" |
| 43 | |
| 44 | /* |
| 45 | * Number of guaranteed r1bios in case of extreme VM load: |
| 46 | */ |
| 47 | #define NR_RAID1_BIOS 256 |
| 48 | |
| 49 | /* when we get a read error on a read-only array, we redirect to another |
| 50 | * device without failing the first device, or trying to over-write to |
| 51 | * correct the read error. To keep track of bad blocks on a per-bio |
| 52 | * level, we store IO_BLOCKED in the appropriate 'bios' pointer |
| 53 | */ |
| 54 | #define IO_BLOCKED ((struct bio *)1) |
| 55 | /* When we successfully write to a known bad-block, we need to remove the |
| 56 | * bad-block marking which must be done from process context. So we record |
| 57 | * the success by setting devs[n].bio to IO_MADE_GOOD |
| 58 | */ |
| 59 | #define IO_MADE_GOOD ((struct bio *)2) |
| 60 | |
| 61 | #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) |
| 62 | |
| 63 | /* When there are this many requests queue to be written by |
| 64 | * the raid1 thread, we become 'congested' to provide back-pressure |
| 65 | * for writeback. |
| 66 | */ |
| 67 | static int max_queued_requests = 1024; |
| 68 | |
| 69 | static void allow_barrier(struct r1conf *conf, sector_t start_next_window, |
| 70 | sector_t bi_sector); |
| 71 | static void lower_barrier(struct r1conf *conf); |
| 72 | |
| 73 | static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) |
| 74 | { |
| 75 | struct pool_info *pi = data; |
| 76 | int size = offsetof(struct r1bio, bios[pi->raid_disks]); |
| 77 | |
| 78 | /* allocate a r1bio with room for raid_disks entries in the bios array */ |
| 79 | return kzalloc(size, gfp_flags); |
| 80 | } |
| 81 | |
| 82 | static void r1bio_pool_free(void *r1_bio, void *data) |
| 83 | { |
| 84 | kfree(r1_bio); |
| 85 | } |
| 86 | |
| 87 | #define RESYNC_BLOCK_SIZE (64*1024) |
| 88 | #define RESYNC_DEPTH 32 |
| 89 | #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) |
| 90 | #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) |
| 91 | #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) |
| 92 | #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) |
| 93 | #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) |
| 94 | #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) |
| 95 | #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS) |
| 96 | |
| 97 | static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) |
| 98 | { |
| 99 | struct pool_info *pi = data; |
| 100 | struct r1bio *r1_bio; |
| 101 | struct bio *bio; |
| 102 | int need_pages; |
| 103 | int i, j; |
| 104 | |
| 105 | r1_bio = r1bio_pool_alloc(gfp_flags, pi); |
| 106 | if (!r1_bio) |
| 107 | return NULL; |
| 108 | |
| 109 | /* |
| 110 | * Allocate bios : 1 for reading, n-1 for writing |
| 111 | */ |
| 112 | for (j = pi->raid_disks ; j-- ; ) { |
| 113 | bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); |
| 114 | if (!bio) |
| 115 | goto out_free_bio; |
| 116 | r1_bio->bios[j] = bio; |
| 117 | } |
| 118 | /* |
| 119 | * Allocate RESYNC_PAGES data pages and attach them to |
| 120 | * the first bio. |
| 121 | * If this is a user-requested check/repair, allocate |
| 122 | * RESYNC_PAGES for each bio. |
| 123 | */ |
| 124 | if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) |
| 125 | need_pages = pi->raid_disks; |
| 126 | else |
| 127 | need_pages = 1; |
| 128 | for (j = 0; j < need_pages; j++) { |
| 129 | bio = r1_bio->bios[j]; |
| 130 | bio->bi_vcnt = RESYNC_PAGES; |
| 131 | |
| 132 | if (bio_alloc_pages(bio, gfp_flags)) |
| 133 | goto out_free_pages; |
| 134 | } |
| 135 | /* If not user-requests, copy the page pointers to all bios */ |
| 136 | if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { |
| 137 | for (i=0; i<RESYNC_PAGES ; i++) |
| 138 | for (j=1; j<pi->raid_disks; j++) |
| 139 | r1_bio->bios[j]->bi_io_vec[i].bv_page = |
| 140 | r1_bio->bios[0]->bi_io_vec[i].bv_page; |
| 141 | } |
| 142 | |
| 143 | r1_bio->master_bio = NULL; |
| 144 | |
| 145 | return r1_bio; |
| 146 | |
| 147 | out_free_pages: |
| 148 | while (--j >= 0) { |
| 149 | struct bio_vec *bv; |
| 150 | |
| 151 | bio_for_each_segment_all(bv, r1_bio->bios[j], i) |
| 152 | __free_page(bv->bv_page); |
| 153 | } |
| 154 | |
| 155 | out_free_bio: |
| 156 | while (++j < pi->raid_disks) |
| 157 | bio_put(r1_bio->bios[j]); |
| 158 | r1bio_pool_free(r1_bio, data); |
| 159 | return NULL; |
| 160 | } |
| 161 | |
| 162 | static void r1buf_pool_free(void *__r1_bio, void *data) |
| 163 | { |
| 164 | struct pool_info *pi = data; |
| 165 | int i,j; |
| 166 | struct r1bio *r1bio = __r1_bio; |
| 167 | |
| 168 | for (i = 0; i < RESYNC_PAGES; i++) |
| 169 | for (j = pi->raid_disks; j-- ;) { |
| 170 | if (j == 0 || |
| 171 | r1bio->bios[j]->bi_io_vec[i].bv_page != |
| 172 | r1bio->bios[0]->bi_io_vec[i].bv_page) |
| 173 | safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); |
| 174 | } |
| 175 | for (i=0 ; i < pi->raid_disks; i++) |
| 176 | bio_put(r1bio->bios[i]); |
| 177 | |
| 178 | r1bio_pool_free(r1bio, data); |
| 179 | } |
| 180 | |
| 181 | static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) |
| 182 | { |
| 183 | int i; |
| 184 | |
| 185 | for (i = 0; i < conf->raid_disks * 2; i++) { |
| 186 | struct bio **bio = r1_bio->bios + i; |
| 187 | if (!BIO_SPECIAL(*bio)) |
| 188 | bio_put(*bio); |
| 189 | *bio = NULL; |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | static void free_r1bio(struct r1bio *r1_bio) |
| 194 | { |
| 195 | struct r1conf *conf = r1_bio->mddev->private; |
| 196 | |
| 197 | put_all_bios(conf, r1_bio); |
| 198 | mempool_free(r1_bio, conf->r1bio_pool); |
| 199 | } |
| 200 | |
| 201 | static void put_buf(struct r1bio *r1_bio) |
| 202 | { |
| 203 | struct r1conf *conf = r1_bio->mddev->private; |
| 204 | int i; |
| 205 | |
| 206 | for (i = 0; i < conf->raid_disks * 2; i++) { |
| 207 | struct bio *bio = r1_bio->bios[i]; |
| 208 | if (bio->bi_end_io) |
| 209 | rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); |
| 210 | } |
| 211 | |
| 212 | mempool_free(r1_bio, conf->r1buf_pool); |
| 213 | |
| 214 | lower_barrier(conf); |
| 215 | } |
| 216 | |
| 217 | static void reschedule_retry(struct r1bio *r1_bio) |
| 218 | { |
| 219 | unsigned long flags; |
| 220 | struct mddev *mddev = r1_bio->mddev; |
| 221 | struct r1conf *conf = mddev->private; |
| 222 | |
| 223 | spin_lock_irqsave(&conf->device_lock, flags); |
| 224 | list_add(&r1_bio->retry_list, &conf->retry_list); |
| 225 | conf->nr_queued ++; |
| 226 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 227 | |
| 228 | wake_up(&conf->wait_barrier); |
| 229 | md_wakeup_thread(mddev->thread); |
| 230 | } |
| 231 | |
| 232 | /* |
| 233 | * raid_end_bio_io() is called when we have finished servicing a mirrored |
| 234 | * operation and are ready to return a success/failure code to the buffer |
| 235 | * cache layer. |
| 236 | */ |
| 237 | static void call_bio_endio(struct r1bio *r1_bio) |
| 238 | { |
| 239 | struct bio *bio = r1_bio->master_bio; |
| 240 | int done; |
| 241 | struct r1conf *conf = r1_bio->mddev->private; |
| 242 | sector_t start_next_window = r1_bio->start_next_window; |
| 243 | sector_t bi_sector = bio->bi_iter.bi_sector; |
| 244 | |
| 245 | if (bio->bi_phys_segments) { |
| 246 | unsigned long flags; |
| 247 | spin_lock_irqsave(&conf->device_lock, flags); |
| 248 | bio->bi_phys_segments--; |
| 249 | done = (bio->bi_phys_segments == 0); |
| 250 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 251 | /* |
| 252 | * make_request() might be waiting for |
| 253 | * bi_phys_segments to decrease |
| 254 | */ |
| 255 | wake_up(&conf->wait_barrier); |
| 256 | } else |
| 257 | done = 1; |
| 258 | |
| 259 | if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) |
| 260 | bio->bi_error = -EIO; |
| 261 | |
| 262 | if (done) { |
| 263 | bio_endio(bio); |
| 264 | /* |
| 265 | * Wake up any possible resync thread that waits for the device |
| 266 | * to go idle. |
| 267 | */ |
| 268 | allow_barrier(conf, start_next_window, bi_sector); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | static void raid_end_bio_io(struct r1bio *r1_bio) |
| 273 | { |
| 274 | struct bio *bio = r1_bio->master_bio; |
| 275 | |
| 276 | /* if nobody has done the final endio yet, do it now */ |
| 277 | if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { |
| 278 | pr_debug("raid1: sync end %s on sectors %llu-%llu\n", |
| 279 | (bio_data_dir(bio) == WRITE) ? "write" : "read", |
| 280 | (unsigned long long) bio->bi_iter.bi_sector, |
| 281 | (unsigned long long) bio_end_sector(bio) - 1); |
| 282 | |
| 283 | call_bio_endio(r1_bio); |
| 284 | } |
| 285 | free_r1bio(r1_bio); |
| 286 | } |
| 287 | |
| 288 | /* |
| 289 | * Update disk head position estimator based on IRQ completion info. |
| 290 | */ |
| 291 | static inline void update_head_pos(int disk, struct r1bio *r1_bio) |
| 292 | { |
| 293 | struct r1conf *conf = r1_bio->mddev->private; |
| 294 | |
| 295 | conf->mirrors[disk].head_position = |
| 296 | r1_bio->sector + (r1_bio->sectors); |
| 297 | } |
| 298 | |
| 299 | /* |
| 300 | * Find the disk number which triggered given bio |
| 301 | */ |
| 302 | static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) |
| 303 | { |
| 304 | int mirror; |
| 305 | struct r1conf *conf = r1_bio->mddev->private; |
| 306 | int raid_disks = conf->raid_disks; |
| 307 | |
| 308 | for (mirror = 0; mirror < raid_disks * 2; mirror++) |
| 309 | if (r1_bio->bios[mirror] == bio) |
| 310 | break; |
| 311 | |
| 312 | BUG_ON(mirror == raid_disks * 2); |
| 313 | update_head_pos(mirror, r1_bio); |
| 314 | |
| 315 | return mirror; |
| 316 | } |
| 317 | |
| 318 | static void raid1_end_read_request(struct bio *bio) |
| 319 | { |
| 320 | int uptodate = !bio->bi_error; |
| 321 | struct r1bio *r1_bio = bio->bi_private; |
| 322 | int mirror; |
| 323 | struct r1conf *conf = r1_bio->mddev->private; |
| 324 | |
| 325 | mirror = r1_bio->read_disk; |
| 326 | /* |
| 327 | * this branch is our 'one mirror IO has finished' event handler: |
| 328 | */ |
| 329 | update_head_pos(mirror, r1_bio); |
| 330 | |
| 331 | if (uptodate) |
| 332 | set_bit(R1BIO_Uptodate, &r1_bio->state); |
| 333 | else { |
| 334 | /* If all other devices have failed, we want to return |
| 335 | * the error upwards rather than fail the last device. |
| 336 | * Here we redefine "uptodate" to mean "Don't want to retry" |
| 337 | */ |
| 338 | unsigned long flags; |
| 339 | spin_lock_irqsave(&conf->device_lock, flags); |
| 340 | if (r1_bio->mddev->degraded == conf->raid_disks || |
| 341 | (r1_bio->mddev->degraded == conf->raid_disks-1 && |
| 342 | test_bit(In_sync, &conf->mirrors[mirror].rdev->flags))) |
| 343 | uptodate = 1; |
| 344 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 345 | } |
| 346 | |
| 347 | if (uptodate) { |
| 348 | raid_end_bio_io(r1_bio); |
| 349 | rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); |
| 350 | } else { |
| 351 | /* |
| 352 | * oops, read error: |
| 353 | */ |
| 354 | char b[BDEVNAME_SIZE]; |
| 355 | printk_ratelimited( |
| 356 | KERN_ERR "md/raid1:%s: %s: " |
| 357 | "rescheduling sector %llu\n", |
| 358 | mdname(conf->mddev), |
| 359 | bdevname(conf->mirrors[mirror].rdev->bdev, |
| 360 | b), |
| 361 | (unsigned long long)r1_bio->sector); |
| 362 | set_bit(R1BIO_ReadError, &r1_bio->state); |
| 363 | reschedule_retry(r1_bio); |
| 364 | /* don't drop the reference on read_disk yet */ |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | static void close_write(struct r1bio *r1_bio) |
| 369 | { |
| 370 | /* it really is the end of this request */ |
| 371 | if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { |
| 372 | /* free extra copy of the data pages */ |
| 373 | int i = r1_bio->behind_page_count; |
| 374 | while (i--) |
| 375 | safe_put_page(r1_bio->behind_bvecs[i].bv_page); |
| 376 | kfree(r1_bio->behind_bvecs); |
| 377 | r1_bio->behind_bvecs = NULL; |
| 378 | } |
| 379 | /* clear the bitmap if all writes complete successfully */ |
| 380 | bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, |
| 381 | r1_bio->sectors, |
| 382 | !test_bit(R1BIO_Degraded, &r1_bio->state), |
| 383 | test_bit(R1BIO_BehindIO, &r1_bio->state)); |
| 384 | md_write_end(r1_bio->mddev); |
| 385 | } |
| 386 | |
| 387 | static void r1_bio_write_done(struct r1bio *r1_bio) |
| 388 | { |
| 389 | if (!atomic_dec_and_test(&r1_bio->remaining)) |
| 390 | return; |
| 391 | |
| 392 | if (test_bit(R1BIO_WriteError, &r1_bio->state)) |
| 393 | reschedule_retry(r1_bio); |
| 394 | else { |
| 395 | close_write(r1_bio); |
| 396 | if (test_bit(R1BIO_MadeGood, &r1_bio->state)) |
| 397 | reschedule_retry(r1_bio); |
| 398 | else |
| 399 | raid_end_bio_io(r1_bio); |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | static void raid1_end_write_request(struct bio *bio) |
| 404 | { |
| 405 | struct r1bio *r1_bio = bio->bi_private; |
| 406 | int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); |
| 407 | struct r1conf *conf = r1_bio->mddev->private; |
| 408 | struct bio *to_put = NULL; |
| 409 | |
| 410 | mirror = find_bio_disk(r1_bio, bio); |
| 411 | |
| 412 | /* |
| 413 | * 'one mirror IO has finished' event handler: |
| 414 | */ |
| 415 | if (bio->bi_error) { |
| 416 | set_bit(WriteErrorSeen, |
| 417 | &conf->mirrors[mirror].rdev->flags); |
| 418 | if (!test_and_set_bit(WantReplacement, |
| 419 | &conf->mirrors[mirror].rdev->flags)) |
| 420 | set_bit(MD_RECOVERY_NEEDED, & |
| 421 | conf->mddev->recovery); |
| 422 | |
| 423 | set_bit(R1BIO_WriteError, &r1_bio->state); |
| 424 | } else { |
| 425 | /* |
| 426 | * Set R1BIO_Uptodate in our master bio, so that we |
| 427 | * will return a good error code for to the higher |
| 428 | * levels even if IO on some other mirrored buffer |
| 429 | * fails. |
| 430 | * |
| 431 | * The 'master' represents the composite IO operation |
| 432 | * to user-side. So if something waits for IO, then it |
| 433 | * will wait for the 'master' bio. |
| 434 | */ |
| 435 | sector_t first_bad; |
| 436 | int bad_sectors; |
| 437 | |
| 438 | r1_bio->bios[mirror] = NULL; |
| 439 | to_put = bio; |
| 440 | /* |
| 441 | * Do not set R1BIO_Uptodate if the current device is |
| 442 | * rebuilding or Faulty. This is because we cannot use |
| 443 | * such device for properly reading the data back (we could |
| 444 | * potentially use it, if the current write would have felt |
| 445 | * before rdev->recovery_offset, but for simplicity we don't |
| 446 | * check this here. |
| 447 | */ |
| 448 | if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) && |
| 449 | !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)) |
| 450 | set_bit(R1BIO_Uptodate, &r1_bio->state); |
| 451 | |
| 452 | /* Maybe we can clear some bad blocks. */ |
| 453 | if (is_badblock(conf->mirrors[mirror].rdev, |
| 454 | r1_bio->sector, r1_bio->sectors, |
| 455 | &first_bad, &bad_sectors)) { |
| 456 | r1_bio->bios[mirror] = IO_MADE_GOOD; |
| 457 | set_bit(R1BIO_MadeGood, &r1_bio->state); |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | if (behind) { |
| 462 | if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) |
| 463 | atomic_dec(&r1_bio->behind_remaining); |
| 464 | |
| 465 | /* |
| 466 | * In behind mode, we ACK the master bio once the I/O |
| 467 | * has safely reached all non-writemostly |
| 468 | * disks. Setting the Returned bit ensures that this |
| 469 | * gets done only once -- we don't ever want to return |
| 470 | * -EIO here, instead we'll wait |
| 471 | */ |
| 472 | if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && |
| 473 | test_bit(R1BIO_Uptodate, &r1_bio->state)) { |
| 474 | /* Maybe we can return now */ |
| 475 | if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { |
| 476 | struct bio *mbio = r1_bio->master_bio; |
| 477 | pr_debug("raid1: behind end write sectors" |
| 478 | " %llu-%llu\n", |
| 479 | (unsigned long long) mbio->bi_iter.bi_sector, |
| 480 | (unsigned long long) bio_end_sector(mbio) - 1); |
| 481 | call_bio_endio(r1_bio); |
| 482 | } |
| 483 | } |
| 484 | } |
| 485 | if (r1_bio->bios[mirror] == NULL) |
| 486 | rdev_dec_pending(conf->mirrors[mirror].rdev, |
| 487 | conf->mddev); |
| 488 | |
| 489 | /* |
| 490 | * Let's see if all mirrored write operations have finished |
| 491 | * already. |
| 492 | */ |
| 493 | r1_bio_write_done(r1_bio); |
| 494 | |
| 495 | if (to_put) |
| 496 | bio_put(to_put); |
| 497 | } |
| 498 | |
| 499 | /* |
| 500 | * This routine returns the disk from which the requested read should |
| 501 | * be done. There is a per-array 'next expected sequential IO' sector |
| 502 | * number - if this matches on the next IO then we use the last disk. |
| 503 | * There is also a per-disk 'last know head position' sector that is |
| 504 | * maintained from IRQ contexts, both the normal and the resync IO |
| 505 | * completion handlers update this position correctly. If there is no |
| 506 | * perfect sequential match then we pick the disk whose head is closest. |
| 507 | * |
| 508 | * If there are 2 mirrors in the same 2 devices, performance degrades |
| 509 | * because position is mirror, not device based. |
| 510 | * |
| 511 | * The rdev for the device selected will have nr_pending incremented. |
| 512 | */ |
| 513 | static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) |
| 514 | { |
| 515 | const sector_t this_sector = r1_bio->sector; |
| 516 | int sectors; |
| 517 | int best_good_sectors; |
| 518 | int best_disk, best_dist_disk, best_pending_disk; |
| 519 | int has_nonrot_disk; |
| 520 | int disk; |
| 521 | sector_t best_dist; |
| 522 | unsigned int min_pending; |
| 523 | struct md_rdev *rdev; |
| 524 | int choose_first; |
| 525 | int choose_next_idle; |
| 526 | |
| 527 | rcu_read_lock(); |
| 528 | /* |
| 529 | * Check if we can balance. We can balance on the whole |
| 530 | * device if no resync is going on, or below the resync window. |
| 531 | * We take the first readable disk when above the resync window. |
| 532 | */ |
| 533 | retry: |
| 534 | sectors = r1_bio->sectors; |
| 535 | best_disk = -1; |
| 536 | best_dist_disk = -1; |
| 537 | best_dist = MaxSector; |
| 538 | best_pending_disk = -1; |
| 539 | min_pending = UINT_MAX; |
| 540 | best_good_sectors = 0; |
| 541 | has_nonrot_disk = 0; |
| 542 | choose_next_idle = 0; |
| 543 | |
| 544 | if ((conf->mddev->recovery_cp < this_sector + sectors) || |
| 545 | (mddev_is_clustered(conf->mddev) && |
| 546 | md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, |
| 547 | this_sector + sectors))) |
| 548 | choose_first = 1; |
| 549 | else |
| 550 | choose_first = 0; |
| 551 | |
| 552 | for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { |
| 553 | sector_t dist; |
| 554 | sector_t first_bad; |
| 555 | int bad_sectors; |
| 556 | unsigned int pending; |
| 557 | bool nonrot; |
| 558 | |
| 559 | rdev = rcu_dereference(conf->mirrors[disk].rdev); |
| 560 | if (r1_bio->bios[disk] == IO_BLOCKED |
| 561 | || rdev == NULL |
| 562 | || test_bit(Faulty, &rdev->flags)) |
| 563 | continue; |
| 564 | if (!test_bit(In_sync, &rdev->flags) && |
| 565 | rdev->recovery_offset < this_sector + sectors) |
| 566 | continue; |
| 567 | if (test_bit(WriteMostly, &rdev->flags)) { |
| 568 | /* Don't balance among write-mostly, just |
| 569 | * use the first as a last resort */ |
| 570 | if (best_dist_disk < 0) { |
| 571 | if (is_badblock(rdev, this_sector, sectors, |
| 572 | &first_bad, &bad_sectors)) { |
| 573 | if (first_bad <= this_sector) |
| 574 | /* Cannot use this */ |
| 575 | continue; |
| 576 | best_good_sectors = first_bad - this_sector; |
| 577 | } else |
| 578 | best_good_sectors = sectors; |
| 579 | best_dist_disk = disk; |
| 580 | best_pending_disk = disk; |
| 581 | } |
| 582 | continue; |
| 583 | } |
| 584 | /* This is a reasonable device to use. It might |
| 585 | * even be best. |
| 586 | */ |
| 587 | if (is_badblock(rdev, this_sector, sectors, |
| 588 | &first_bad, &bad_sectors)) { |
| 589 | if (best_dist < MaxSector) |
| 590 | /* already have a better device */ |
| 591 | continue; |
| 592 | if (first_bad <= this_sector) { |
| 593 | /* cannot read here. If this is the 'primary' |
| 594 | * device, then we must not read beyond |
| 595 | * bad_sectors from another device.. |
| 596 | */ |
| 597 | bad_sectors -= (this_sector - first_bad); |
| 598 | if (choose_first && sectors > bad_sectors) |
| 599 | sectors = bad_sectors; |
| 600 | if (best_good_sectors > sectors) |
| 601 | best_good_sectors = sectors; |
| 602 | |
| 603 | } else { |
| 604 | sector_t good_sectors = first_bad - this_sector; |
| 605 | if (good_sectors > best_good_sectors) { |
| 606 | best_good_sectors = good_sectors; |
| 607 | best_disk = disk; |
| 608 | } |
| 609 | if (choose_first) |
| 610 | break; |
| 611 | } |
| 612 | continue; |
| 613 | } else |
| 614 | best_good_sectors = sectors; |
| 615 | |
| 616 | nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); |
| 617 | has_nonrot_disk |= nonrot; |
| 618 | pending = atomic_read(&rdev->nr_pending); |
| 619 | dist = abs(this_sector - conf->mirrors[disk].head_position); |
| 620 | if (choose_first) { |
| 621 | best_disk = disk; |
| 622 | break; |
| 623 | } |
| 624 | /* Don't change to another disk for sequential reads */ |
| 625 | if (conf->mirrors[disk].next_seq_sect == this_sector |
| 626 | || dist == 0) { |
| 627 | int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; |
| 628 | struct raid1_info *mirror = &conf->mirrors[disk]; |
| 629 | |
| 630 | best_disk = disk; |
| 631 | /* |
| 632 | * If buffered sequential IO size exceeds optimal |
| 633 | * iosize, check if there is idle disk. If yes, choose |
| 634 | * the idle disk. read_balance could already choose an |
| 635 | * idle disk before noticing it's a sequential IO in |
| 636 | * this disk. This doesn't matter because this disk |
| 637 | * will idle, next time it will be utilized after the |
| 638 | * first disk has IO size exceeds optimal iosize. In |
| 639 | * this way, iosize of the first disk will be optimal |
| 640 | * iosize at least. iosize of the second disk might be |
| 641 | * small, but not a big deal since when the second disk |
| 642 | * starts IO, the first disk is likely still busy. |
| 643 | */ |
| 644 | if (nonrot && opt_iosize > 0 && |
| 645 | mirror->seq_start != MaxSector && |
| 646 | mirror->next_seq_sect > opt_iosize && |
| 647 | mirror->next_seq_sect - opt_iosize >= |
| 648 | mirror->seq_start) { |
| 649 | choose_next_idle = 1; |
| 650 | continue; |
| 651 | } |
| 652 | break; |
| 653 | } |
| 654 | /* If device is idle, use it */ |
| 655 | if (pending == 0) { |
| 656 | best_disk = disk; |
| 657 | break; |
| 658 | } |
| 659 | |
| 660 | if (choose_next_idle) |
| 661 | continue; |
| 662 | |
| 663 | if (min_pending > pending) { |
| 664 | min_pending = pending; |
| 665 | best_pending_disk = disk; |
| 666 | } |
| 667 | |
| 668 | if (dist < best_dist) { |
| 669 | best_dist = dist; |
| 670 | best_dist_disk = disk; |
| 671 | } |
| 672 | } |
| 673 | |
| 674 | /* |
| 675 | * If all disks are rotational, choose the closest disk. If any disk is |
| 676 | * non-rotational, choose the disk with less pending request even the |
| 677 | * disk is rotational, which might/might not be optimal for raids with |
| 678 | * mixed ratation/non-rotational disks depending on workload. |
| 679 | */ |
| 680 | if (best_disk == -1) { |
| 681 | if (has_nonrot_disk) |
| 682 | best_disk = best_pending_disk; |
| 683 | else |
| 684 | best_disk = best_dist_disk; |
| 685 | } |
| 686 | |
| 687 | if (best_disk >= 0) { |
| 688 | rdev = rcu_dereference(conf->mirrors[best_disk].rdev); |
| 689 | if (!rdev) |
| 690 | goto retry; |
| 691 | atomic_inc(&rdev->nr_pending); |
| 692 | if (test_bit(Faulty, &rdev->flags)) { |
| 693 | /* cannot risk returning a device that failed |
| 694 | * before we inc'ed nr_pending |
| 695 | */ |
| 696 | rdev_dec_pending(rdev, conf->mddev); |
| 697 | goto retry; |
| 698 | } |
| 699 | sectors = best_good_sectors; |
| 700 | |
| 701 | if (conf->mirrors[best_disk].next_seq_sect != this_sector) |
| 702 | conf->mirrors[best_disk].seq_start = this_sector; |
| 703 | |
| 704 | conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; |
| 705 | } |
| 706 | rcu_read_unlock(); |
| 707 | *max_sectors = sectors; |
| 708 | |
| 709 | return best_disk; |
| 710 | } |
| 711 | |
| 712 | static int raid1_congested(struct mddev *mddev, int bits) |
| 713 | { |
| 714 | struct r1conf *conf = mddev->private; |
| 715 | int i, ret = 0; |
| 716 | |
| 717 | if ((bits & (1 << WB_async_congested)) && |
| 718 | conf->pending_count >= max_queued_requests) |
| 719 | return 1; |
| 720 | |
| 721 | rcu_read_lock(); |
| 722 | for (i = 0; i < conf->raid_disks * 2; i++) { |
| 723 | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); |
| 724 | if (rdev && !test_bit(Faulty, &rdev->flags)) { |
| 725 | struct request_queue *q = bdev_get_queue(rdev->bdev); |
| 726 | |
| 727 | BUG_ON(!q); |
| 728 | |
| 729 | /* Note the '|| 1' - when read_balance prefers |
| 730 | * non-congested targets, it can be removed |
| 731 | */ |
| 732 | if ((bits & (1 << WB_async_congested)) || 1) |
| 733 | ret |= bdi_congested(&q->backing_dev_info, bits); |
| 734 | else |
| 735 | ret &= bdi_congested(&q->backing_dev_info, bits); |
| 736 | } |
| 737 | } |
| 738 | rcu_read_unlock(); |
| 739 | return ret; |
| 740 | } |
| 741 | |
| 742 | static void flush_pending_writes(struct r1conf *conf) |
| 743 | { |
| 744 | /* Any writes that have been queued but are awaiting |
| 745 | * bitmap updates get flushed here. |
| 746 | */ |
| 747 | spin_lock_irq(&conf->device_lock); |
| 748 | |
| 749 | if (conf->pending_bio_list.head) { |
| 750 | struct bio *bio; |
| 751 | bio = bio_list_get(&conf->pending_bio_list); |
| 752 | conf->pending_count = 0; |
| 753 | spin_unlock_irq(&conf->device_lock); |
| 754 | /* flush any pending bitmap writes to |
| 755 | * disk before proceeding w/ I/O */ |
| 756 | bitmap_unplug(conf->mddev->bitmap); |
| 757 | wake_up(&conf->wait_barrier); |
| 758 | |
| 759 | while (bio) { /* submit pending writes */ |
| 760 | struct bio *next = bio->bi_next; |
| 761 | bio->bi_next = NULL; |
| 762 | if (unlikely((bio->bi_rw & REQ_DISCARD) && |
| 763 | !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) |
| 764 | /* Just ignore it */ |
| 765 | bio_endio(bio); |
| 766 | else |
| 767 | generic_make_request(bio); |
| 768 | bio = next; |
| 769 | } |
| 770 | } else |
| 771 | spin_unlock_irq(&conf->device_lock); |
| 772 | } |
| 773 | |
| 774 | /* Barriers.... |
| 775 | * Sometimes we need to suspend IO while we do something else, |
| 776 | * either some resync/recovery, or reconfigure the array. |
| 777 | * To do this we raise a 'barrier'. |
| 778 | * The 'barrier' is a counter that can be raised multiple times |
| 779 | * to count how many activities are happening which preclude |
| 780 | * normal IO. |
| 781 | * We can only raise the barrier if there is no pending IO. |
| 782 | * i.e. if nr_pending == 0. |
| 783 | * We choose only to raise the barrier if no-one is waiting for the |
| 784 | * barrier to go down. This means that as soon as an IO request |
| 785 | * is ready, no other operations which require a barrier will start |
| 786 | * until the IO request has had a chance. |
| 787 | * |
| 788 | * So: regular IO calls 'wait_barrier'. When that returns there |
| 789 | * is no backgroup IO happening, It must arrange to call |
| 790 | * allow_barrier when it has finished its IO. |
| 791 | * backgroup IO calls must call raise_barrier. Once that returns |
| 792 | * there is no normal IO happeing. It must arrange to call |
| 793 | * lower_barrier when the particular background IO completes. |
| 794 | */ |
| 795 | static void raise_barrier(struct r1conf *conf, sector_t sector_nr) |
| 796 | { |
| 797 | spin_lock_irq(&conf->resync_lock); |
| 798 | |
| 799 | /* Wait until no block IO is waiting */ |
| 800 | wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, |
| 801 | conf->resync_lock); |
| 802 | |
| 803 | /* block any new IO from starting */ |
| 804 | conf->barrier++; |
| 805 | conf->next_resync = sector_nr; |
| 806 | |
| 807 | /* For these conditions we must wait: |
| 808 | * A: while the array is in frozen state |
| 809 | * B: while barrier >= RESYNC_DEPTH, meaning resync reach |
| 810 | * the max count which allowed. |
| 811 | * C: next_resync + RESYNC_SECTORS > start_next_window, meaning |
| 812 | * next resync will reach to the window which normal bios are |
| 813 | * handling. |
| 814 | * D: while there are any active requests in the current window. |
| 815 | */ |
| 816 | wait_event_lock_irq(conf->wait_barrier, |
| 817 | !conf->array_frozen && |
| 818 | conf->barrier < RESYNC_DEPTH && |
| 819 | conf->current_window_requests == 0 && |
| 820 | (conf->start_next_window >= |
| 821 | conf->next_resync + RESYNC_SECTORS), |
| 822 | conf->resync_lock); |
| 823 | |
| 824 | conf->nr_pending++; |
| 825 | spin_unlock_irq(&conf->resync_lock); |
| 826 | } |
| 827 | |
| 828 | static void lower_barrier(struct r1conf *conf) |
| 829 | { |
| 830 | unsigned long flags; |
| 831 | BUG_ON(conf->barrier <= 0); |
| 832 | spin_lock_irqsave(&conf->resync_lock, flags); |
| 833 | conf->barrier--; |
| 834 | conf->nr_pending--; |
| 835 | spin_unlock_irqrestore(&conf->resync_lock, flags); |
| 836 | wake_up(&conf->wait_barrier); |
| 837 | } |
| 838 | |
| 839 | static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio) |
| 840 | { |
| 841 | bool wait = false; |
| 842 | |
| 843 | if (conf->array_frozen || !bio) |
| 844 | wait = true; |
| 845 | else if (conf->barrier && bio_data_dir(bio) == WRITE) { |
| 846 | if ((conf->mddev->curr_resync_completed |
| 847 | >= bio_end_sector(bio)) || |
| 848 | (conf->next_resync + NEXT_NORMALIO_DISTANCE |
| 849 | <= bio->bi_iter.bi_sector)) |
| 850 | wait = false; |
| 851 | else |
| 852 | wait = true; |
| 853 | } |
| 854 | |
| 855 | return wait; |
| 856 | } |
| 857 | |
| 858 | static sector_t wait_barrier(struct r1conf *conf, struct bio *bio) |
| 859 | { |
| 860 | sector_t sector = 0; |
| 861 | |
| 862 | spin_lock_irq(&conf->resync_lock); |
| 863 | if (need_to_wait_for_sync(conf, bio)) { |
| 864 | conf->nr_waiting++; |
| 865 | /* Wait for the barrier to drop. |
| 866 | * However if there are already pending |
| 867 | * requests (preventing the barrier from |
| 868 | * rising completely), and the |
| 869 | * per-process bio queue isn't empty, |
| 870 | * then don't wait, as we need to empty |
| 871 | * that queue to allow conf->start_next_window |
| 872 | * to increase. |
| 873 | */ |
| 874 | wait_event_lock_irq(conf->wait_barrier, |
| 875 | !conf->array_frozen && |
| 876 | (!conf->barrier || |
| 877 | ((conf->start_next_window < |
| 878 | conf->next_resync + RESYNC_SECTORS) && |
| 879 | current->bio_list && |
| 880 | (!bio_list_empty(¤t->bio_list[0]) || |
| 881 | !bio_list_empty(¤t->bio_list[1])))), |
| 882 | conf->resync_lock); |
| 883 | conf->nr_waiting--; |
| 884 | } |
| 885 | |
| 886 | if (bio && bio_data_dir(bio) == WRITE) { |
| 887 | if (bio->bi_iter.bi_sector >= conf->next_resync) { |
| 888 | if (conf->start_next_window == MaxSector) |
| 889 | conf->start_next_window = |
| 890 | conf->next_resync + |
| 891 | NEXT_NORMALIO_DISTANCE; |
| 892 | |
| 893 | if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE) |
| 894 | <= bio->bi_iter.bi_sector) |
| 895 | conf->next_window_requests++; |
| 896 | else |
| 897 | conf->current_window_requests++; |
| 898 | sector = conf->start_next_window; |
| 899 | } |
| 900 | } |
| 901 | |
| 902 | conf->nr_pending++; |
| 903 | spin_unlock_irq(&conf->resync_lock); |
| 904 | return sector; |
| 905 | } |
| 906 | |
| 907 | static void allow_barrier(struct r1conf *conf, sector_t start_next_window, |
| 908 | sector_t bi_sector) |
| 909 | { |
| 910 | unsigned long flags; |
| 911 | |
| 912 | spin_lock_irqsave(&conf->resync_lock, flags); |
| 913 | conf->nr_pending--; |
| 914 | if (start_next_window) { |
| 915 | if (start_next_window == conf->start_next_window) { |
| 916 | if (conf->start_next_window + NEXT_NORMALIO_DISTANCE |
| 917 | <= bi_sector) |
| 918 | conf->next_window_requests--; |
| 919 | else |
| 920 | conf->current_window_requests--; |
| 921 | } else |
| 922 | conf->current_window_requests--; |
| 923 | |
| 924 | if (!conf->current_window_requests) { |
| 925 | if (conf->next_window_requests) { |
| 926 | conf->current_window_requests = |
| 927 | conf->next_window_requests; |
| 928 | conf->next_window_requests = 0; |
| 929 | conf->start_next_window += |
| 930 | NEXT_NORMALIO_DISTANCE; |
| 931 | } else |
| 932 | conf->start_next_window = MaxSector; |
| 933 | } |
| 934 | } |
| 935 | spin_unlock_irqrestore(&conf->resync_lock, flags); |
| 936 | wake_up(&conf->wait_barrier); |
| 937 | } |
| 938 | |
| 939 | static void freeze_array(struct r1conf *conf, int extra) |
| 940 | { |
| 941 | /* stop syncio and normal IO and wait for everything to |
| 942 | * go quite. |
| 943 | * We wait until nr_pending match nr_queued+extra |
| 944 | * This is called in the context of one normal IO request |
| 945 | * that has failed. Thus any sync request that might be pending |
| 946 | * will be blocked by nr_pending, and we need to wait for |
| 947 | * pending IO requests to complete or be queued for re-try. |
| 948 | * Thus the number queued (nr_queued) plus this request (extra) |
| 949 | * must match the number of pending IOs (nr_pending) before |
| 950 | * we continue. |
| 951 | */ |
| 952 | spin_lock_irq(&conf->resync_lock); |
| 953 | conf->array_frozen = 1; |
| 954 | wait_event_lock_irq_cmd(conf->wait_barrier, |
| 955 | conf->nr_pending == conf->nr_queued+extra, |
| 956 | conf->resync_lock, |
| 957 | flush_pending_writes(conf)); |
| 958 | spin_unlock_irq(&conf->resync_lock); |
| 959 | } |
| 960 | static void unfreeze_array(struct r1conf *conf) |
| 961 | { |
| 962 | /* reverse the effect of the freeze */ |
| 963 | spin_lock_irq(&conf->resync_lock); |
| 964 | conf->array_frozen = 0; |
| 965 | wake_up(&conf->wait_barrier); |
| 966 | spin_unlock_irq(&conf->resync_lock); |
| 967 | } |
| 968 | |
| 969 | /* duplicate the data pages for behind I/O |
| 970 | */ |
| 971 | static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) |
| 972 | { |
| 973 | int i; |
| 974 | struct bio_vec *bvec; |
| 975 | struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), |
| 976 | GFP_NOIO); |
| 977 | if (unlikely(!bvecs)) |
| 978 | return; |
| 979 | |
| 980 | bio_for_each_segment_all(bvec, bio, i) { |
| 981 | bvecs[i] = *bvec; |
| 982 | bvecs[i].bv_page = alloc_page(GFP_NOIO); |
| 983 | if (unlikely(!bvecs[i].bv_page)) |
| 984 | goto do_sync_io; |
| 985 | memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, |
| 986 | kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); |
| 987 | kunmap(bvecs[i].bv_page); |
| 988 | kunmap(bvec->bv_page); |
| 989 | } |
| 990 | r1_bio->behind_bvecs = bvecs; |
| 991 | r1_bio->behind_page_count = bio->bi_vcnt; |
| 992 | set_bit(R1BIO_BehindIO, &r1_bio->state); |
| 993 | return; |
| 994 | |
| 995 | do_sync_io: |
| 996 | for (i = 0; i < bio->bi_vcnt; i++) |
| 997 | if (bvecs[i].bv_page) |
| 998 | put_page(bvecs[i].bv_page); |
| 999 | kfree(bvecs); |
| 1000 | pr_debug("%dB behind alloc failed, doing sync I/O\n", |
| 1001 | bio->bi_iter.bi_size); |
| 1002 | } |
| 1003 | |
| 1004 | struct raid1_plug_cb { |
| 1005 | struct blk_plug_cb cb; |
| 1006 | struct bio_list pending; |
| 1007 | int pending_cnt; |
| 1008 | }; |
| 1009 | |
| 1010 | static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) |
| 1011 | { |
| 1012 | struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, |
| 1013 | cb); |
| 1014 | struct mddev *mddev = plug->cb.data; |
| 1015 | struct r1conf *conf = mddev->private; |
| 1016 | struct bio *bio; |
| 1017 | |
| 1018 | if (from_schedule || current->bio_list) { |
| 1019 | spin_lock_irq(&conf->device_lock); |
| 1020 | bio_list_merge(&conf->pending_bio_list, &plug->pending); |
| 1021 | conf->pending_count += plug->pending_cnt; |
| 1022 | spin_unlock_irq(&conf->device_lock); |
| 1023 | wake_up(&conf->wait_barrier); |
| 1024 | md_wakeup_thread(mddev->thread); |
| 1025 | kfree(plug); |
| 1026 | return; |
| 1027 | } |
| 1028 | |
| 1029 | /* we aren't scheduling, so we can do the write-out directly. */ |
| 1030 | bio = bio_list_get(&plug->pending); |
| 1031 | bitmap_unplug(mddev->bitmap); |
| 1032 | wake_up(&conf->wait_barrier); |
| 1033 | |
| 1034 | while (bio) { /* submit pending writes */ |
| 1035 | struct bio *next = bio->bi_next; |
| 1036 | bio->bi_next = NULL; |
| 1037 | if (unlikely((bio->bi_rw & REQ_DISCARD) && |
| 1038 | !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) |
| 1039 | /* Just ignore it */ |
| 1040 | bio_endio(bio); |
| 1041 | else |
| 1042 | generic_make_request(bio); |
| 1043 | bio = next; |
| 1044 | } |
| 1045 | kfree(plug); |
| 1046 | } |
| 1047 | |
| 1048 | static void make_request(struct mddev *mddev, struct bio * bio) |
| 1049 | { |
| 1050 | struct r1conf *conf = mddev->private; |
| 1051 | struct raid1_info *mirror; |
| 1052 | struct r1bio *r1_bio; |
| 1053 | struct bio *read_bio; |
| 1054 | int i, disks; |
| 1055 | struct bitmap *bitmap; |
| 1056 | unsigned long flags; |
| 1057 | const int rw = bio_data_dir(bio); |
| 1058 | const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); |
| 1059 | const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); |
| 1060 | const unsigned long do_discard = (bio->bi_rw |
| 1061 | & (REQ_DISCARD | REQ_SECURE)); |
| 1062 | const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); |
| 1063 | struct md_rdev *blocked_rdev; |
| 1064 | struct blk_plug_cb *cb; |
| 1065 | struct raid1_plug_cb *plug = NULL; |
| 1066 | int first_clone; |
| 1067 | int sectors_handled; |
| 1068 | int max_sectors; |
| 1069 | sector_t start_next_window; |
| 1070 | |
| 1071 | /* |
| 1072 | * Register the new request and wait if the reconstruction |
| 1073 | * thread has put up a bar for new requests. |
| 1074 | * Continue immediately if no resync is active currently. |
| 1075 | */ |
| 1076 | |
| 1077 | md_write_start(mddev, bio); /* wait on superblock update early */ |
| 1078 | |
| 1079 | if (bio_data_dir(bio) == WRITE && |
| 1080 | ((bio_end_sector(bio) > mddev->suspend_lo && |
| 1081 | bio->bi_iter.bi_sector < mddev->suspend_hi) || |
| 1082 | (mddev_is_clustered(mddev) && |
| 1083 | md_cluster_ops->area_resyncing(mddev, WRITE, |
| 1084 | bio->bi_iter.bi_sector, bio_end_sector(bio))))) { |
| 1085 | /* As the suspend_* range is controlled by |
| 1086 | * userspace, we want an interruptible |
| 1087 | * wait. |
| 1088 | */ |
| 1089 | DEFINE_WAIT(w); |
| 1090 | for (;;) { |
| 1091 | sigset_t full, old; |
| 1092 | prepare_to_wait(&conf->wait_barrier, |
| 1093 | &w, TASK_INTERRUPTIBLE); |
| 1094 | if (bio_end_sector(bio) <= mddev->suspend_lo || |
| 1095 | bio->bi_iter.bi_sector >= mddev->suspend_hi || |
| 1096 | (mddev_is_clustered(mddev) && |
| 1097 | !md_cluster_ops->area_resyncing(mddev, WRITE, |
| 1098 | bio->bi_iter.bi_sector, bio_end_sector(bio)))) |
| 1099 | break; |
| 1100 | sigfillset(&full); |
| 1101 | sigprocmask(SIG_BLOCK, &full, &old); |
| 1102 | schedule(); |
| 1103 | sigprocmask(SIG_SETMASK, &old, NULL); |
| 1104 | } |
| 1105 | finish_wait(&conf->wait_barrier, &w); |
| 1106 | } |
| 1107 | |
| 1108 | start_next_window = wait_barrier(conf, bio); |
| 1109 | |
| 1110 | bitmap = mddev->bitmap; |
| 1111 | |
| 1112 | /* |
| 1113 | * make_request() can abort the operation when READA is being |
| 1114 | * used and no empty request is available. |
| 1115 | * |
| 1116 | */ |
| 1117 | r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); |
| 1118 | |
| 1119 | r1_bio->master_bio = bio; |
| 1120 | r1_bio->sectors = bio_sectors(bio); |
| 1121 | r1_bio->state = 0; |
| 1122 | r1_bio->mddev = mddev; |
| 1123 | r1_bio->sector = bio->bi_iter.bi_sector; |
| 1124 | |
| 1125 | /* We might need to issue multiple reads to different |
| 1126 | * devices if there are bad blocks around, so we keep |
| 1127 | * track of the number of reads in bio->bi_phys_segments. |
| 1128 | * If this is 0, there is only one r1_bio and no locking |
| 1129 | * will be needed when requests complete. If it is |
| 1130 | * non-zero, then it is the number of not-completed requests. |
| 1131 | */ |
| 1132 | bio->bi_phys_segments = 0; |
| 1133 | bio_clear_flag(bio, BIO_SEG_VALID); |
| 1134 | |
| 1135 | if (rw == READ) { |
| 1136 | /* |
| 1137 | * read balancing logic: |
| 1138 | */ |
| 1139 | int rdisk; |
| 1140 | |
| 1141 | read_again: |
| 1142 | rdisk = read_balance(conf, r1_bio, &max_sectors); |
| 1143 | |
| 1144 | if (rdisk < 0) { |
| 1145 | /* couldn't find anywhere to read from */ |
| 1146 | raid_end_bio_io(r1_bio); |
| 1147 | return; |
| 1148 | } |
| 1149 | mirror = conf->mirrors + rdisk; |
| 1150 | |
| 1151 | if (test_bit(WriteMostly, &mirror->rdev->flags) && |
| 1152 | bitmap) { |
| 1153 | /* Reading from a write-mostly device must |
| 1154 | * take care not to over-take any writes |
| 1155 | * that are 'behind' |
| 1156 | */ |
| 1157 | wait_event(bitmap->behind_wait, |
| 1158 | atomic_read(&bitmap->behind_writes) == 0); |
| 1159 | } |
| 1160 | r1_bio->read_disk = rdisk; |
| 1161 | r1_bio->start_next_window = 0; |
| 1162 | |
| 1163 | read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); |
| 1164 | bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector, |
| 1165 | max_sectors); |
| 1166 | |
| 1167 | r1_bio->bios[rdisk] = read_bio; |
| 1168 | |
| 1169 | read_bio->bi_iter.bi_sector = r1_bio->sector + |
| 1170 | mirror->rdev->data_offset; |
| 1171 | read_bio->bi_bdev = mirror->rdev->bdev; |
| 1172 | read_bio->bi_end_io = raid1_end_read_request; |
| 1173 | read_bio->bi_rw = READ | do_sync; |
| 1174 | read_bio->bi_private = r1_bio; |
| 1175 | |
| 1176 | if (max_sectors < r1_bio->sectors) { |
| 1177 | /* could not read all from this device, so we will |
| 1178 | * need another r1_bio. |
| 1179 | */ |
| 1180 | |
| 1181 | sectors_handled = (r1_bio->sector + max_sectors |
| 1182 | - bio->bi_iter.bi_sector); |
| 1183 | r1_bio->sectors = max_sectors; |
| 1184 | spin_lock_irq(&conf->device_lock); |
| 1185 | if (bio->bi_phys_segments == 0) |
| 1186 | bio->bi_phys_segments = 2; |
| 1187 | else |
| 1188 | bio->bi_phys_segments++; |
| 1189 | spin_unlock_irq(&conf->device_lock); |
| 1190 | /* Cannot call generic_make_request directly |
| 1191 | * as that will be queued in __make_request |
| 1192 | * and subsequent mempool_alloc might block waiting |
| 1193 | * for it. So hand bio over to raid1d. |
| 1194 | */ |
| 1195 | reschedule_retry(r1_bio); |
| 1196 | |
| 1197 | r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); |
| 1198 | |
| 1199 | r1_bio->master_bio = bio; |
| 1200 | r1_bio->sectors = bio_sectors(bio) - sectors_handled; |
| 1201 | r1_bio->state = 0; |
| 1202 | r1_bio->mddev = mddev; |
| 1203 | r1_bio->sector = bio->bi_iter.bi_sector + |
| 1204 | sectors_handled; |
| 1205 | goto read_again; |
| 1206 | } else |
| 1207 | generic_make_request(read_bio); |
| 1208 | return; |
| 1209 | } |
| 1210 | |
| 1211 | /* |
| 1212 | * WRITE: |
| 1213 | */ |
| 1214 | if (conf->pending_count >= max_queued_requests) { |
| 1215 | md_wakeup_thread(mddev->thread); |
| 1216 | wait_event(conf->wait_barrier, |
| 1217 | conf->pending_count < max_queued_requests); |
| 1218 | } |
| 1219 | /* first select target devices under rcu_lock and |
| 1220 | * inc refcount on their rdev. Record them by setting |
| 1221 | * bios[x] to bio |
| 1222 | * If there are known/acknowledged bad blocks on any device on |
| 1223 | * which we have seen a write error, we want to avoid writing those |
| 1224 | * blocks. |
| 1225 | * This potentially requires several writes to write around |
| 1226 | * the bad blocks. Each set of writes gets it's own r1bio |
| 1227 | * with a set of bios attached. |
| 1228 | */ |
| 1229 | |
| 1230 | disks = conf->raid_disks * 2; |
| 1231 | retry_write: |
| 1232 | r1_bio->start_next_window = start_next_window; |
| 1233 | blocked_rdev = NULL; |
| 1234 | rcu_read_lock(); |
| 1235 | max_sectors = r1_bio->sectors; |
| 1236 | for (i = 0; i < disks; i++) { |
| 1237 | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); |
| 1238 | if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { |
| 1239 | atomic_inc(&rdev->nr_pending); |
| 1240 | blocked_rdev = rdev; |
| 1241 | break; |
| 1242 | } |
| 1243 | r1_bio->bios[i] = NULL; |
| 1244 | if (!rdev || test_bit(Faulty, &rdev->flags)) { |
| 1245 | if (i < conf->raid_disks) |
| 1246 | set_bit(R1BIO_Degraded, &r1_bio->state); |
| 1247 | continue; |
| 1248 | } |
| 1249 | |
| 1250 | atomic_inc(&rdev->nr_pending); |
| 1251 | if (test_bit(WriteErrorSeen, &rdev->flags)) { |
| 1252 | sector_t first_bad; |
| 1253 | int bad_sectors; |
| 1254 | int is_bad; |
| 1255 | |
| 1256 | is_bad = is_badblock(rdev, r1_bio->sector, |
| 1257 | max_sectors, |
| 1258 | &first_bad, &bad_sectors); |
| 1259 | if (is_bad < 0) { |
| 1260 | /* mustn't write here until the bad block is |
| 1261 | * acknowledged*/ |
| 1262 | set_bit(BlockedBadBlocks, &rdev->flags); |
| 1263 | blocked_rdev = rdev; |
| 1264 | break; |
| 1265 | } |
| 1266 | if (is_bad && first_bad <= r1_bio->sector) { |
| 1267 | /* Cannot write here at all */ |
| 1268 | bad_sectors -= (r1_bio->sector - first_bad); |
| 1269 | if (bad_sectors < max_sectors) |
| 1270 | /* mustn't write more than bad_sectors |
| 1271 | * to other devices yet |
| 1272 | */ |
| 1273 | max_sectors = bad_sectors; |
| 1274 | rdev_dec_pending(rdev, mddev); |
| 1275 | /* We don't set R1BIO_Degraded as that |
| 1276 | * only applies if the disk is |
| 1277 | * missing, so it might be re-added, |
| 1278 | * and we want to know to recover this |
| 1279 | * chunk. |
| 1280 | * In this case the device is here, |
| 1281 | * and the fact that this chunk is not |
| 1282 | * in-sync is recorded in the bad |
| 1283 | * block log |
| 1284 | */ |
| 1285 | continue; |
| 1286 | } |
| 1287 | if (is_bad) { |
| 1288 | int good_sectors = first_bad - r1_bio->sector; |
| 1289 | if (good_sectors < max_sectors) |
| 1290 | max_sectors = good_sectors; |
| 1291 | } |
| 1292 | } |
| 1293 | r1_bio->bios[i] = bio; |
| 1294 | } |
| 1295 | rcu_read_unlock(); |
| 1296 | |
| 1297 | if (unlikely(blocked_rdev)) { |
| 1298 | /* Wait for this device to become unblocked */ |
| 1299 | int j; |
| 1300 | sector_t old = start_next_window; |
| 1301 | |
| 1302 | for (j = 0; j < i; j++) |
| 1303 | if (r1_bio->bios[j]) |
| 1304 | rdev_dec_pending(conf->mirrors[j].rdev, mddev); |
| 1305 | r1_bio->state = 0; |
| 1306 | allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector); |
| 1307 | md_wait_for_blocked_rdev(blocked_rdev, mddev); |
| 1308 | start_next_window = wait_barrier(conf, bio); |
| 1309 | /* |
| 1310 | * We must make sure the multi r1bios of bio have |
| 1311 | * the same value of bi_phys_segments |
| 1312 | */ |
| 1313 | if (bio->bi_phys_segments && old && |
| 1314 | old != start_next_window) |
| 1315 | /* Wait for the former r1bio(s) to complete */ |
| 1316 | wait_event(conf->wait_barrier, |
| 1317 | bio->bi_phys_segments == 1); |
| 1318 | goto retry_write; |
| 1319 | } |
| 1320 | |
| 1321 | if (max_sectors < r1_bio->sectors) { |
| 1322 | /* We are splitting this write into multiple parts, so |
| 1323 | * we need to prepare for allocating another r1_bio. |
| 1324 | */ |
| 1325 | r1_bio->sectors = max_sectors; |
| 1326 | spin_lock_irq(&conf->device_lock); |
| 1327 | if (bio->bi_phys_segments == 0) |
| 1328 | bio->bi_phys_segments = 2; |
| 1329 | else |
| 1330 | bio->bi_phys_segments++; |
| 1331 | spin_unlock_irq(&conf->device_lock); |
| 1332 | } |
| 1333 | sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector; |
| 1334 | |
| 1335 | atomic_set(&r1_bio->remaining, 1); |
| 1336 | atomic_set(&r1_bio->behind_remaining, 0); |
| 1337 | |
| 1338 | first_clone = 1; |
| 1339 | for (i = 0; i < disks; i++) { |
| 1340 | struct bio *mbio; |
| 1341 | if (!r1_bio->bios[i]) |
| 1342 | continue; |
| 1343 | |
| 1344 | mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); |
| 1345 | bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors); |
| 1346 | |
| 1347 | if (first_clone) { |
| 1348 | /* do behind I/O ? |
| 1349 | * Not if there are too many, or cannot |
| 1350 | * allocate memory, or a reader on WriteMostly |
| 1351 | * is waiting for behind writes to flush */ |
| 1352 | if (bitmap && |
| 1353 | (atomic_read(&bitmap->behind_writes) |
| 1354 | < mddev->bitmap_info.max_write_behind) && |
| 1355 | !waitqueue_active(&bitmap->behind_wait)) |
| 1356 | alloc_behind_pages(mbio, r1_bio); |
| 1357 | |
| 1358 | bitmap_startwrite(bitmap, r1_bio->sector, |
| 1359 | r1_bio->sectors, |
| 1360 | test_bit(R1BIO_BehindIO, |
| 1361 | &r1_bio->state)); |
| 1362 | first_clone = 0; |
| 1363 | } |
| 1364 | if (r1_bio->behind_bvecs) { |
| 1365 | struct bio_vec *bvec; |
| 1366 | int j; |
| 1367 | |
| 1368 | /* |
| 1369 | * We trimmed the bio, so _all is legit |
| 1370 | */ |
| 1371 | bio_for_each_segment_all(bvec, mbio, j) |
| 1372 | bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; |
| 1373 | if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) |
| 1374 | atomic_inc(&r1_bio->behind_remaining); |
| 1375 | } |
| 1376 | |
| 1377 | r1_bio->bios[i] = mbio; |
| 1378 | |
| 1379 | mbio->bi_iter.bi_sector = (r1_bio->sector + |
| 1380 | conf->mirrors[i].rdev->data_offset); |
| 1381 | mbio->bi_bdev = conf->mirrors[i].rdev->bdev; |
| 1382 | mbio->bi_end_io = raid1_end_write_request; |
| 1383 | mbio->bi_rw = |
| 1384 | WRITE | do_flush_fua | do_sync | do_discard | do_same; |
| 1385 | mbio->bi_private = r1_bio; |
| 1386 | |
| 1387 | atomic_inc(&r1_bio->remaining); |
| 1388 | |
| 1389 | cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); |
| 1390 | if (cb) |
| 1391 | plug = container_of(cb, struct raid1_plug_cb, cb); |
| 1392 | else |
| 1393 | plug = NULL; |
| 1394 | spin_lock_irqsave(&conf->device_lock, flags); |
| 1395 | if (plug) { |
| 1396 | bio_list_add(&plug->pending, mbio); |
| 1397 | plug->pending_cnt++; |
| 1398 | } else { |
| 1399 | bio_list_add(&conf->pending_bio_list, mbio); |
| 1400 | conf->pending_count++; |
| 1401 | } |
| 1402 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 1403 | if (!plug) |
| 1404 | md_wakeup_thread(mddev->thread); |
| 1405 | } |
| 1406 | /* Mustn't call r1_bio_write_done before this next test, |
| 1407 | * as it could result in the bio being freed. |
| 1408 | */ |
| 1409 | if (sectors_handled < bio_sectors(bio)) { |
| 1410 | r1_bio_write_done(r1_bio); |
| 1411 | /* We need another r1_bio. It has already been counted |
| 1412 | * in bio->bi_phys_segments |
| 1413 | */ |
| 1414 | r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); |
| 1415 | r1_bio->master_bio = bio; |
| 1416 | r1_bio->sectors = bio_sectors(bio) - sectors_handled; |
| 1417 | r1_bio->state = 0; |
| 1418 | r1_bio->mddev = mddev; |
| 1419 | r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled; |
| 1420 | goto retry_write; |
| 1421 | } |
| 1422 | |
| 1423 | r1_bio_write_done(r1_bio); |
| 1424 | |
| 1425 | /* In case raid1d snuck in to freeze_array */ |
| 1426 | wake_up(&conf->wait_barrier); |
| 1427 | } |
| 1428 | |
| 1429 | static void status(struct seq_file *seq, struct mddev *mddev) |
| 1430 | { |
| 1431 | struct r1conf *conf = mddev->private; |
| 1432 | int i; |
| 1433 | |
| 1434 | seq_printf(seq, " [%d/%d] [", conf->raid_disks, |
| 1435 | conf->raid_disks - mddev->degraded); |
| 1436 | rcu_read_lock(); |
| 1437 | for (i = 0; i < conf->raid_disks; i++) { |
| 1438 | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); |
| 1439 | seq_printf(seq, "%s", |
| 1440 | rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); |
| 1441 | } |
| 1442 | rcu_read_unlock(); |
| 1443 | seq_printf(seq, "]"); |
| 1444 | } |
| 1445 | |
| 1446 | static void error(struct mddev *mddev, struct md_rdev *rdev) |
| 1447 | { |
| 1448 | char b[BDEVNAME_SIZE]; |
| 1449 | struct r1conf *conf = mddev->private; |
| 1450 | unsigned long flags; |
| 1451 | |
| 1452 | /* |
| 1453 | * If it is not operational, then we have already marked it as dead |
| 1454 | * else if it is the last working disks, ignore the error, let the |
| 1455 | * next level up know. |
| 1456 | * else mark the drive as failed |
| 1457 | */ |
| 1458 | if (test_bit(In_sync, &rdev->flags) |
| 1459 | && (conf->raid_disks - mddev->degraded) == 1) { |
| 1460 | /* |
| 1461 | * Don't fail the drive, act as though we were just a |
| 1462 | * normal single drive. |
| 1463 | * However don't try a recovery from this drive as |
| 1464 | * it is very likely to fail. |
| 1465 | */ |
| 1466 | conf->recovery_disabled = mddev->recovery_disabled; |
| 1467 | return; |
| 1468 | } |
| 1469 | set_bit(Blocked, &rdev->flags); |
| 1470 | spin_lock_irqsave(&conf->device_lock, flags); |
| 1471 | if (test_and_clear_bit(In_sync, &rdev->flags)) { |
| 1472 | mddev->degraded++; |
| 1473 | set_bit(Faulty, &rdev->flags); |
| 1474 | } else |
| 1475 | set_bit(Faulty, &rdev->flags); |
| 1476 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 1477 | /* |
| 1478 | * if recovery is running, make sure it aborts. |
| 1479 | */ |
| 1480 | set_bit(MD_RECOVERY_INTR, &mddev->recovery); |
| 1481 | set_bit(MD_CHANGE_DEVS, &mddev->flags); |
| 1482 | set_bit(MD_CHANGE_PENDING, &mddev->flags); |
| 1483 | printk(KERN_ALERT |
| 1484 | "md/raid1:%s: Disk failure on %s, disabling device.\n" |
| 1485 | "md/raid1:%s: Operation continuing on %d devices.\n", |
| 1486 | mdname(mddev), bdevname(rdev->bdev, b), |
| 1487 | mdname(mddev), conf->raid_disks - mddev->degraded); |
| 1488 | } |
| 1489 | |
| 1490 | static void print_conf(struct r1conf *conf) |
| 1491 | { |
| 1492 | int i; |
| 1493 | |
| 1494 | printk(KERN_DEBUG "RAID1 conf printout:\n"); |
| 1495 | if (!conf) { |
| 1496 | printk(KERN_DEBUG "(!conf)\n"); |
| 1497 | return; |
| 1498 | } |
| 1499 | printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, |
| 1500 | conf->raid_disks); |
| 1501 | |
| 1502 | rcu_read_lock(); |
| 1503 | for (i = 0; i < conf->raid_disks; i++) { |
| 1504 | char b[BDEVNAME_SIZE]; |
| 1505 | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); |
| 1506 | if (rdev) |
| 1507 | printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", |
| 1508 | i, !test_bit(In_sync, &rdev->flags), |
| 1509 | !test_bit(Faulty, &rdev->flags), |
| 1510 | bdevname(rdev->bdev,b)); |
| 1511 | } |
| 1512 | rcu_read_unlock(); |
| 1513 | } |
| 1514 | |
| 1515 | static void close_sync(struct r1conf *conf) |
| 1516 | { |
| 1517 | wait_barrier(conf, NULL); |
| 1518 | allow_barrier(conf, 0, 0); |
| 1519 | |
| 1520 | mempool_destroy(conf->r1buf_pool); |
| 1521 | conf->r1buf_pool = NULL; |
| 1522 | |
| 1523 | spin_lock_irq(&conf->resync_lock); |
| 1524 | conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE; |
| 1525 | conf->start_next_window = MaxSector; |
| 1526 | conf->current_window_requests += |
| 1527 | conf->next_window_requests; |
| 1528 | conf->next_window_requests = 0; |
| 1529 | spin_unlock_irq(&conf->resync_lock); |
| 1530 | } |
| 1531 | |
| 1532 | static int raid1_spare_active(struct mddev *mddev) |
| 1533 | { |
| 1534 | int i; |
| 1535 | struct r1conf *conf = mddev->private; |
| 1536 | int count = 0; |
| 1537 | unsigned long flags; |
| 1538 | |
| 1539 | /* |
| 1540 | * Find all failed disks within the RAID1 configuration |
| 1541 | * and mark them readable. |
| 1542 | * Called under mddev lock, so rcu protection not needed. |
| 1543 | * device_lock used to avoid races with raid1_end_read_request |
| 1544 | * which expects 'In_sync' flags and ->degraded to be consistent. |
| 1545 | */ |
| 1546 | spin_lock_irqsave(&conf->device_lock, flags); |
| 1547 | for (i = 0; i < conf->raid_disks; i++) { |
| 1548 | struct md_rdev *rdev = conf->mirrors[i].rdev; |
| 1549 | struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; |
| 1550 | if (repl |
| 1551 | && !test_bit(Candidate, &repl->flags) |
| 1552 | && repl->recovery_offset == MaxSector |
| 1553 | && !test_bit(Faulty, &repl->flags) |
| 1554 | && !test_and_set_bit(In_sync, &repl->flags)) { |
| 1555 | /* replacement has just become active */ |
| 1556 | if (!rdev || |
| 1557 | !test_and_clear_bit(In_sync, &rdev->flags)) |
| 1558 | count++; |
| 1559 | if (rdev) { |
| 1560 | /* Replaced device not technically |
| 1561 | * faulty, but we need to be sure |
| 1562 | * it gets removed and never re-added |
| 1563 | */ |
| 1564 | set_bit(Faulty, &rdev->flags); |
| 1565 | sysfs_notify_dirent_safe( |
| 1566 | rdev->sysfs_state); |
| 1567 | } |
| 1568 | } |
| 1569 | if (rdev |
| 1570 | && rdev->recovery_offset == MaxSector |
| 1571 | && !test_bit(Faulty, &rdev->flags) |
| 1572 | && !test_and_set_bit(In_sync, &rdev->flags)) { |
| 1573 | count++; |
| 1574 | sysfs_notify_dirent_safe(rdev->sysfs_state); |
| 1575 | } |
| 1576 | } |
| 1577 | mddev->degraded -= count; |
| 1578 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 1579 | |
| 1580 | print_conf(conf); |
| 1581 | return count; |
| 1582 | } |
| 1583 | |
| 1584 | static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) |
| 1585 | { |
| 1586 | struct r1conf *conf = mddev->private; |
| 1587 | int err = -EEXIST; |
| 1588 | int mirror = 0; |
| 1589 | struct raid1_info *p; |
| 1590 | int first = 0; |
| 1591 | int last = conf->raid_disks - 1; |
| 1592 | |
| 1593 | if (mddev->recovery_disabled == conf->recovery_disabled) |
| 1594 | return -EBUSY; |
| 1595 | |
| 1596 | if (md_integrity_add_rdev(rdev, mddev)) |
| 1597 | return -ENXIO; |
| 1598 | |
| 1599 | if (rdev->raid_disk >= 0) |
| 1600 | first = last = rdev->raid_disk; |
| 1601 | |
| 1602 | /* |
| 1603 | * find the disk ... but prefer rdev->saved_raid_disk |
| 1604 | * if possible. |
| 1605 | */ |
| 1606 | if (rdev->saved_raid_disk >= 0 && |
| 1607 | rdev->saved_raid_disk >= first && |
| 1608 | conf->mirrors[rdev->saved_raid_disk].rdev == NULL) |
| 1609 | first = last = rdev->saved_raid_disk; |
| 1610 | |
| 1611 | for (mirror = first; mirror <= last; mirror++) { |
| 1612 | p = conf->mirrors+mirror; |
| 1613 | if (!p->rdev) { |
| 1614 | |
| 1615 | if (mddev->gendisk) |
| 1616 | disk_stack_limits(mddev->gendisk, rdev->bdev, |
| 1617 | rdev->data_offset << 9); |
| 1618 | |
| 1619 | p->head_position = 0; |
| 1620 | rdev->raid_disk = mirror; |
| 1621 | err = 0; |
| 1622 | /* As all devices are equivalent, we don't need a full recovery |
| 1623 | * if this was recently any drive of the array |
| 1624 | */ |
| 1625 | if (rdev->saved_raid_disk < 0) |
| 1626 | conf->fullsync = 1; |
| 1627 | rcu_assign_pointer(p->rdev, rdev); |
| 1628 | break; |
| 1629 | } |
| 1630 | if (test_bit(WantReplacement, &p->rdev->flags) && |
| 1631 | p[conf->raid_disks].rdev == NULL) { |
| 1632 | /* Add this device as a replacement */ |
| 1633 | clear_bit(In_sync, &rdev->flags); |
| 1634 | set_bit(Replacement, &rdev->flags); |
| 1635 | rdev->raid_disk = mirror; |
| 1636 | err = 0; |
| 1637 | conf->fullsync = 1; |
| 1638 | rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); |
| 1639 | break; |
| 1640 | } |
| 1641 | } |
| 1642 | if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) |
| 1643 | queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); |
| 1644 | print_conf(conf); |
| 1645 | return err; |
| 1646 | } |
| 1647 | |
| 1648 | static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) |
| 1649 | { |
| 1650 | struct r1conf *conf = mddev->private; |
| 1651 | int err = 0; |
| 1652 | int number = rdev->raid_disk; |
| 1653 | struct raid1_info *p = conf->mirrors + number; |
| 1654 | |
| 1655 | if (rdev != p->rdev) |
| 1656 | p = conf->mirrors + conf->raid_disks + number; |
| 1657 | |
| 1658 | print_conf(conf); |
| 1659 | if (rdev == p->rdev) { |
| 1660 | if (test_bit(In_sync, &rdev->flags) || |
| 1661 | atomic_read(&rdev->nr_pending)) { |
| 1662 | err = -EBUSY; |
| 1663 | goto abort; |
| 1664 | } |
| 1665 | /* Only remove non-faulty devices if recovery |
| 1666 | * is not possible. |
| 1667 | */ |
| 1668 | if (!test_bit(Faulty, &rdev->flags) && |
| 1669 | mddev->recovery_disabled != conf->recovery_disabled && |
| 1670 | mddev->degraded < conf->raid_disks) { |
| 1671 | err = -EBUSY; |
| 1672 | goto abort; |
| 1673 | } |
| 1674 | p->rdev = NULL; |
| 1675 | synchronize_rcu(); |
| 1676 | if (atomic_read(&rdev->nr_pending)) { |
| 1677 | /* lost the race, try later */ |
| 1678 | err = -EBUSY; |
| 1679 | p->rdev = rdev; |
| 1680 | goto abort; |
| 1681 | } else if (conf->mirrors[conf->raid_disks + number].rdev) { |
| 1682 | /* We just removed a device that is being replaced. |
| 1683 | * Move down the replacement. We drain all IO before |
| 1684 | * doing this to avoid confusion. |
| 1685 | */ |
| 1686 | struct md_rdev *repl = |
| 1687 | conf->mirrors[conf->raid_disks + number].rdev; |
| 1688 | freeze_array(conf, 0); |
| 1689 | clear_bit(Replacement, &repl->flags); |
| 1690 | p->rdev = repl; |
| 1691 | conf->mirrors[conf->raid_disks + number].rdev = NULL; |
| 1692 | unfreeze_array(conf); |
| 1693 | clear_bit(WantReplacement, &rdev->flags); |
| 1694 | } else |
| 1695 | clear_bit(WantReplacement, &rdev->flags); |
| 1696 | err = md_integrity_register(mddev); |
| 1697 | } |
| 1698 | abort: |
| 1699 | |
| 1700 | print_conf(conf); |
| 1701 | return err; |
| 1702 | } |
| 1703 | |
| 1704 | static void end_sync_read(struct bio *bio) |
| 1705 | { |
| 1706 | struct r1bio *r1_bio = bio->bi_private; |
| 1707 | |
| 1708 | update_head_pos(r1_bio->read_disk, r1_bio); |
| 1709 | |
| 1710 | /* |
| 1711 | * we have read a block, now it needs to be re-written, |
| 1712 | * or re-read if the read failed. |
| 1713 | * We don't do much here, just schedule handling by raid1d |
| 1714 | */ |
| 1715 | if (!bio->bi_error) |
| 1716 | set_bit(R1BIO_Uptodate, &r1_bio->state); |
| 1717 | |
| 1718 | if (atomic_dec_and_test(&r1_bio->remaining)) |
| 1719 | reschedule_retry(r1_bio); |
| 1720 | } |
| 1721 | |
| 1722 | static void end_sync_write(struct bio *bio) |
| 1723 | { |
| 1724 | int uptodate = !bio->bi_error; |
| 1725 | struct r1bio *r1_bio = bio->bi_private; |
| 1726 | struct mddev *mddev = r1_bio->mddev; |
| 1727 | struct r1conf *conf = mddev->private; |
| 1728 | int mirror=0; |
| 1729 | sector_t first_bad; |
| 1730 | int bad_sectors; |
| 1731 | |
| 1732 | mirror = find_bio_disk(r1_bio, bio); |
| 1733 | |
| 1734 | if (!uptodate) { |
| 1735 | sector_t sync_blocks = 0; |
| 1736 | sector_t s = r1_bio->sector; |
| 1737 | long sectors_to_go = r1_bio->sectors; |
| 1738 | /* make sure these bits doesn't get cleared. */ |
| 1739 | do { |
| 1740 | bitmap_end_sync(mddev->bitmap, s, |
| 1741 | &sync_blocks, 1); |
| 1742 | s += sync_blocks; |
| 1743 | sectors_to_go -= sync_blocks; |
| 1744 | } while (sectors_to_go > 0); |
| 1745 | set_bit(WriteErrorSeen, |
| 1746 | &conf->mirrors[mirror].rdev->flags); |
| 1747 | if (!test_and_set_bit(WantReplacement, |
| 1748 | &conf->mirrors[mirror].rdev->flags)) |
| 1749 | set_bit(MD_RECOVERY_NEEDED, & |
| 1750 | mddev->recovery); |
| 1751 | set_bit(R1BIO_WriteError, &r1_bio->state); |
| 1752 | } else if (is_badblock(conf->mirrors[mirror].rdev, |
| 1753 | r1_bio->sector, |
| 1754 | r1_bio->sectors, |
| 1755 | &first_bad, &bad_sectors) && |
| 1756 | !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, |
| 1757 | r1_bio->sector, |
| 1758 | r1_bio->sectors, |
| 1759 | &first_bad, &bad_sectors) |
| 1760 | ) |
| 1761 | set_bit(R1BIO_MadeGood, &r1_bio->state); |
| 1762 | |
| 1763 | if (atomic_dec_and_test(&r1_bio->remaining)) { |
| 1764 | int s = r1_bio->sectors; |
| 1765 | if (test_bit(R1BIO_MadeGood, &r1_bio->state) || |
| 1766 | test_bit(R1BIO_WriteError, &r1_bio->state)) |
| 1767 | reschedule_retry(r1_bio); |
| 1768 | else { |
| 1769 | put_buf(r1_bio); |
| 1770 | md_done_sync(mddev, s, uptodate); |
| 1771 | } |
| 1772 | } |
| 1773 | } |
| 1774 | |
| 1775 | static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, |
| 1776 | int sectors, struct page *page, int rw) |
| 1777 | { |
| 1778 | if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) |
| 1779 | /* success */ |
| 1780 | return 1; |
| 1781 | if (rw == WRITE) { |
| 1782 | set_bit(WriteErrorSeen, &rdev->flags); |
| 1783 | if (!test_and_set_bit(WantReplacement, |
| 1784 | &rdev->flags)) |
| 1785 | set_bit(MD_RECOVERY_NEEDED, & |
| 1786 | rdev->mddev->recovery); |
| 1787 | } |
| 1788 | /* need to record an error - either for the block or the device */ |
| 1789 | if (!rdev_set_badblocks(rdev, sector, sectors, 0)) |
| 1790 | md_error(rdev->mddev, rdev); |
| 1791 | return 0; |
| 1792 | } |
| 1793 | |
| 1794 | static int fix_sync_read_error(struct r1bio *r1_bio) |
| 1795 | { |
| 1796 | /* Try some synchronous reads of other devices to get |
| 1797 | * good data, much like with normal read errors. Only |
| 1798 | * read into the pages we already have so we don't |
| 1799 | * need to re-issue the read request. |
| 1800 | * We don't need to freeze the array, because being in an |
| 1801 | * active sync request, there is no normal IO, and |
| 1802 | * no overlapping syncs. |
| 1803 | * We don't need to check is_badblock() again as we |
| 1804 | * made sure that anything with a bad block in range |
| 1805 | * will have bi_end_io clear. |
| 1806 | */ |
| 1807 | struct mddev *mddev = r1_bio->mddev; |
| 1808 | struct r1conf *conf = mddev->private; |
| 1809 | struct bio *bio = r1_bio->bios[r1_bio->read_disk]; |
| 1810 | sector_t sect = r1_bio->sector; |
| 1811 | int sectors = r1_bio->sectors; |
| 1812 | int idx = 0; |
| 1813 | |
| 1814 | while(sectors) { |
| 1815 | int s = sectors; |
| 1816 | int d = r1_bio->read_disk; |
| 1817 | int success = 0; |
| 1818 | struct md_rdev *rdev; |
| 1819 | int start; |
| 1820 | |
| 1821 | if (s > (PAGE_SIZE>>9)) |
| 1822 | s = PAGE_SIZE >> 9; |
| 1823 | do { |
| 1824 | if (r1_bio->bios[d]->bi_end_io == end_sync_read) { |
| 1825 | /* No rcu protection needed here devices |
| 1826 | * can only be removed when no resync is |
| 1827 | * active, and resync is currently active |
| 1828 | */ |
| 1829 | rdev = conf->mirrors[d].rdev; |
| 1830 | if (sync_page_io(rdev, sect, s<<9, |
| 1831 | bio->bi_io_vec[idx].bv_page, |
| 1832 | READ, false)) { |
| 1833 | success = 1; |
| 1834 | break; |
| 1835 | } |
| 1836 | } |
| 1837 | d++; |
| 1838 | if (d == conf->raid_disks * 2) |
| 1839 | d = 0; |
| 1840 | } while (!success && d != r1_bio->read_disk); |
| 1841 | |
| 1842 | if (!success) { |
| 1843 | char b[BDEVNAME_SIZE]; |
| 1844 | int abort = 0; |
| 1845 | /* Cannot read from anywhere, this block is lost. |
| 1846 | * Record a bad block on each device. If that doesn't |
| 1847 | * work just disable and interrupt the recovery. |
| 1848 | * Don't fail devices as that won't really help. |
| 1849 | */ |
| 1850 | printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" |
| 1851 | " for block %llu\n", |
| 1852 | mdname(mddev), |
| 1853 | bdevname(bio->bi_bdev, b), |
| 1854 | (unsigned long long)r1_bio->sector); |
| 1855 | for (d = 0; d < conf->raid_disks * 2; d++) { |
| 1856 | rdev = conf->mirrors[d].rdev; |
| 1857 | if (!rdev || test_bit(Faulty, &rdev->flags)) |
| 1858 | continue; |
| 1859 | if (!rdev_set_badblocks(rdev, sect, s, 0)) |
| 1860 | abort = 1; |
| 1861 | } |
| 1862 | if (abort) { |
| 1863 | conf->recovery_disabled = |
| 1864 | mddev->recovery_disabled; |
| 1865 | set_bit(MD_RECOVERY_INTR, &mddev->recovery); |
| 1866 | md_done_sync(mddev, r1_bio->sectors, 0); |
| 1867 | put_buf(r1_bio); |
| 1868 | return 0; |
| 1869 | } |
| 1870 | /* Try next page */ |
| 1871 | sectors -= s; |
| 1872 | sect += s; |
| 1873 | idx++; |
| 1874 | continue; |
| 1875 | } |
| 1876 | |
| 1877 | start = d; |
| 1878 | /* write it back and re-read */ |
| 1879 | while (d != r1_bio->read_disk) { |
| 1880 | if (d == 0) |
| 1881 | d = conf->raid_disks * 2; |
| 1882 | d--; |
| 1883 | if (r1_bio->bios[d]->bi_end_io != end_sync_read) |
| 1884 | continue; |
| 1885 | rdev = conf->mirrors[d].rdev; |
| 1886 | if (r1_sync_page_io(rdev, sect, s, |
| 1887 | bio->bi_io_vec[idx].bv_page, |
| 1888 | WRITE) == 0) { |
| 1889 | r1_bio->bios[d]->bi_end_io = NULL; |
| 1890 | rdev_dec_pending(rdev, mddev); |
| 1891 | } |
| 1892 | } |
| 1893 | d = start; |
| 1894 | while (d != r1_bio->read_disk) { |
| 1895 | if (d == 0) |
| 1896 | d = conf->raid_disks * 2; |
| 1897 | d--; |
| 1898 | if (r1_bio->bios[d]->bi_end_io != end_sync_read) |
| 1899 | continue; |
| 1900 | rdev = conf->mirrors[d].rdev; |
| 1901 | if (r1_sync_page_io(rdev, sect, s, |
| 1902 | bio->bi_io_vec[idx].bv_page, |
| 1903 | READ) != 0) |
| 1904 | atomic_add(s, &rdev->corrected_errors); |
| 1905 | } |
| 1906 | sectors -= s; |
| 1907 | sect += s; |
| 1908 | idx ++; |
| 1909 | } |
| 1910 | set_bit(R1BIO_Uptodate, &r1_bio->state); |
| 1911 | bio->bi_error = 0; |
| 1912 | return 1; |
| 1913 | } |
| 1914 | |
| 1915 | static void process_checks(struct r1bio *r1_bio) |
| 1916 | { |
| 1917 | /* We have read all readable devices. If we haven't |
| 1918 | * got the block, then there is no hope left. |
| 1919 | * If we have, then we want to do a comparison |
| 1920 | * and skip the write if everything is the same. |
| 1921 | * If any blocks failed to read, then we need to |
| 1922 | * attempt an over-write |
| 1923 | */ |
| 1924 | struct mddev *mddev = r1_bio->mddev; |
| 1925 | struct r1conf *conf = mddev->private; |
| 1926 | int primary; |
| 1927 | int i; |
| 1928 | int vcnt; |
| 1929 | |
| 1930 | /* Fix variable parts of all bios */ |
| 1931 | vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); |
| 1932 | for (i = 0; i < conf->raid_disks * 2; i++) { |
| 1933 | int j; |
| 1934 | int size; |
| 1935 | int error; |
| 1936 | struct bio *b = r1_bio->bios[i]; |
| 1937 | if (b->bi_end_io != end_sync_read) |
| 1938 | continue; |
| 1939 | /* fixup the bio for reuse, but preserve errno */ |
| 1940 | error = b->bi_error; |
| 1941 | bio_reset(b); |
| 1942 | b->bi_error = error; |
| 1943 | b->bi_vcnt = vcnt; |
| 1944 | b->bi_iter.bi_size = r1_bio->sectors << 9; |
| 1945 | b->bi_iter.bi_sector = r1_bio->sector + |
| 1946 | conf->mirrors[i].rdev->data_offset; |
| 1947 | b->bi_bdev = conf->mirrors[i].rdev->bdev; |
| 1948 | b->bi_end_io = end_sync_read; |
| 1949 | b->bi_private = r1_bio; |
| 1950 | |
| 1951 | size = b->bi_iter.bi_size; |
| 1952 | for (j = 0; j < vcnt ; j++) { |
| 1953 | struct bio_vec *bi; |
| 1954 | bi = &b->bi_io_vec[j]; |
| 1955 | bi->bv_offset = 0; |
| 1956 | if (size > PAGE_SIZE) |
| 1957 | bi->bv_len = PAGE_SIZE; |
| 1958 | else |
| 1959 | bi->bv_len = size; |
| 1960 | size -= PAGE_SIZE; |
| 1961 | } |
| 1962 | } |
| 1963 | for (primary = 0; primary < conf->raid_disks * 2; primary++) |
| 1964 | if (r1_bio->bios[primary]->bi_end_io == end_sync_read && |
| 1965 | !r1_bio->bios[primary]->bi_error) { |
| 1966 | r1_bio->bios[primary]->bi_end_io = NULL; |
| 1967 | rdev_dec_pending(conf->mirrors[primary].rdev, mddev); |
| 1968 | break; |
| 1969 | } |
| 1970 | r1_bio->read_disk = primary; |
| 1971 | for (i = 0; i < conf->raid_disks * 2; i++) { |
| 1972 | int j; |
| 1973 | struct bio *pbio = r1_bio->bios[primary]; |
| 1974 | struct bio *sbio = r1_bio->bios[i]; |
| 1975 | int error = sbio->bi_error; |
| 1976 | |
| 1977 | if (sbio->bi_end_io != end_sync_read) |
| 1978 | continue; |
| 1979 | /* Now we can 'fixup' the error value */ |
| 1980 | sbio->bi_error = 0; |
| 1981 | |
| 1982 | if (!error) { |
| 1983 | for (j = vcnt; j-- ; ) { |
| 1984 | struct page *p, *s; |
| 1985 | p = pbio->bi_io_vec[j].bv_page; |
| 1986 | s = sbio->bi_io_vec[j].bv_page; |
| 1987 | if (memcmp(page_address(p), |
| 1988 | page_address(s), |
| 1989 | sbio->bi_io_vec[j].bv_len)) |
| 1990 | break; |
| 1991 | } |
| 1992 | } else |
| 1993 | j = 0; |
| 1994 | if (j >= 0) |
| 1995 | atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); |
| 1996 | if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) |
| 1997 | && !error)) { |
| 1998 | /* No need to write to this device. */ |
| 1999 | sbio->bi_end_io = NULL; |
| 2000 | rdev_dec_pending(conf->mirrors[i].rdev, mddev); |
| 2001 | continue; |
| 2002 | } |
| 2003 | |
| 2004 | bio_copy_data(sbio, pbio); |
| 2005 | } |
| 2006 | } |
| 2007 | |
| 2008 | static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) |
| 2009 | { |
| 2010 | struct r1conf *conf = mddev->private; |
| 2011 | int i; |
| 2012 | int disks = conf->raid_disks * 2; |
| 2013 | struct bio *bio, *wbio; |
| 2014 | |
| 2015 | bio = r1_bio->bios[r1_bio->read_disk]; |
| 2016 | |
| 2017 | if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) |
| 2018 | /* ouch - failed to read all of that. */ |
| 2019 | if (!fix_sync_read_error(r1_bio)) |
| 2020 | return; |
| 2021 | |
| 2022 | if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) |
| 2023 | process_checks(r1_bio); |
| 2024 | |
| 2025 | /* |
| 2026 | * schedule writes |
| 2027 | */ |
| 2028 | atomic_set(&r1_bio->remaining, 1); |
| 2029 | for (i = 0; i < disks ; i++) { |
| 2030 | wbio = r1_bio->bios[i]; |
| 2031 | if (wbio->bi_end_io == NULL || |
| 2032 | (wbio->bi_end_io == end_sync_read && |
| 2033 | (i == r1_bio->read_disk || |
| 2034 | !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) |
| 2035 | continue; |
| 2036 | |
| 2037 | wbio->bi_rw = WRITE; |
| 2038 | wbio->bi_end_io = end_sync_write; |
| 2039 | atomic_inc(&r1_bio->remaining); |
| 2040 | md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); |
| 2041 | |
| 2042 | generic_make_request(wbio); |
| 2043 | } |
| 2044 | |
| 2045 | if (atomic_dec_and_test(&r1_bio->remaining)) { |
| 2046 | /* if we're here, all write(s) have completed, so clean up */ |
| 2047 | int s = r1_bio->sectors; |
| 2048 | if (test_bit(R1BIO_MadeGood, &r1_bio->state) || |
| 2049 | test_bit(R1BIO_WriteError, &r1_bio->state)) |
| 2050 | reschedule_retry(r1_bio); |
| 2051 | else { |
| 2052 | put_buf(r1_bio); |
| 2053 | md_done_sync(mddev, s, 1); |
| 2054 | } |
| 2055 | } |
| 2056 | } |
| 2057 | |
| 2058 | /* |
| 2059 | * This is a kernel thread which: |
| 2060 | * |
| 2061 | * 1. Retries failed read operations on working mirrors. |
| 2062 | * 2. Updates the raid superblock when problems encounter. |
| 2063 | * 3. Performs writes following reads for array synchronising. |
| 2064 | */ |
| 2065 | |
| 2066 | static void fix_read_error(struct r1conf *conf, int read_disk, |
| 2067 | sector_t sect, int sectors) |
| 2068 | { |
| 2069 | struct mddev *mddev = conf->mddev; |
| 2070 | while(sectors) { |
| 2071 | int s = sectors; |
| 2072 | int d = read_disk; |
| 2073 | int success = 0; |
| 2074 | int start; |
| 2075 | struct md_rdev *rdev; |
| 2076 | |
| 2077 | if (s > (PAGE_SIZE>>9)) |
| 2078 | s = PAGE_SIZE >> 9; |
| 2079 | |
| 2080 | do { |
| 2081 | /* Note: no rcu protection needed here |
| 2082 | * as this is synchronous in the raid1d thread |
| 2083 | * which is the thread that might remove |
| 2084 | * a device. If raid1d ever becomes multi-threaded.... |
| 2085 | */ |
| 2086 | sector_t first_bad; |
| 2087 | int bad_sectors; |
| 2088 | |
| 2089 | rdev = conf->mirrors[d].rdev; |
| 2090 | if (rdev && |
| 2091 | (test_bit(In_sync, &rdev->flags) || |
| 2092 | (!test_bit(Faulty, &rdev->flags) && |
| 2093 | rdev->recovery_offset >= sect + s)) && |
| 2094 | is_badblock(rdev, sect, s, |
| 2095 | &first_bad, &bad_sectors) == 0 && |
| 2096 | sync_page_io(rdev, sect, s<<9, |
| 2097 | conf->tmppage, READ, false)) |
| 2098 | success = 1; |
| 2099 | else { |
| 2100 | d++; |
| 2101 | if (d == conf->raid_disks * 2) |
| 2102 | d = 0; |
| 2103 | } |
| 2104 | } while (!success && d != read_disk); |
| 2105 | |
| 2106 | if (!success) { |
| 2107 | /* Cannot read from anywhere - mark it bad */ |
| 2108 | struct md_rdev *rdev = conf->mirrors[read_disk].rdev; |
| 2109 | if (!rdev_set_badblocks(rdev, sect, s, 0)) |
| 2110 | md_error(mddev, rdev); |
| 2111 | break; |
| 2112 | } |
| 2113 | /* write it back and re-read */ |
| 2114 | start = d; |
| 2115 | while (d != read_disk) { |
| 2116 | if (d==0) |
| 2117 | d = conf->raid_disks * 2; |
| 2118 | d--; |
| 2119 | rdev = conf->mirrors[d].rdev; |
| 2120 | if (rdev && |
| 2121 | !test_bit(Faulty, &rdev->flags)) |
| 2122 | r1_sync_page_io(rdev, sect, s, |
| 2123 | conf->tmppage, WRITE); |
| 2124 | } |
| 2125 | d = start; |
| 2126 | while (d != read_disk) { |
| 2127 | char b[BDEVNAME_SIZE]; |
| 2128 | if (d==0) |
| 2129 | d = conf->raid_disks * 2; |
| 2130 | d--; |
| 2131 | rdev = conf->mirrors[d].rdev; |
| 2132 | if (rdev && |
| 2133 | !test_bit(Faulty, &rdev->flags)) { |
| 2134 | if (r1_sync_page_io(rdev, sect, s, |
| 2135 | conf->tmppage, READ)) { |
| 2136 | atomic_add(s, &rdev->corrected_errors); |
| 2137 | printk(KERN_INFO |
| 2138 | "md/raid1:%s: read error corrected " |
| 2139 | "(%d sectors at %llu on %s)\n", |
| 2140 | mdname(mddev), s, |
| 2141 | (unsigned long long)(sect + |
| 2142 | rdev->data_offset), |
| 2143 | bdevname(rdev->bdev, b)); |
| 2144 | } |
| 2145 | } |
| 2146 | } |
| 2147 | sectors -= s; |
| 2148 | sect += s; |
| 2149 | } |
| 2150 | } |
| 2151 | |
| 2152 | static int narrow_write_error(struct r1bio *r1_bio, int i) |
| 2153 | { |
| 2154 | struct mddev *mddev = r1_bio->mddev; |
| 2155 | struct r1conf *conf = mddev->private; |
| 2156 | struct md_rdev *rdev = conf->mirrors[i].rdev; |
| 2157 | |
| 2158 | /* bio has the data to be written to device 'i' where |
| 2159 | * we just recently had a write error. |
| 2160 | * We repeatedly clone the bio and trim down to one block, |
| 2161 | * then try the write. Where the write fails we record |
| 2162 | * a bad block. |
| 2163 | * It is conceivable that the bio doesn't exactly align with |
| 2164 | * blocks. We must handle this somehow. |
| 2165 | * |
| 2166 | * We currently own a reference on the rdev. |
| 2167 | */ |
| 2168 | |
| 2169 | int block_sectors; |
| 2170 | sector_t sector; |
| 2171 | int sectors; |
| 2172 | int sect_to_write = r1_bio->sectors; |
| 2173 | int ok = 1; |
| 2174 | |
| 2175 | if (rdev->badblocks.shift < 0) |
| 2176 | return 0; |
| 2177 | |
| 2178 | block_sectors = roundup(1 << rdev->badblocks.shift, |
| 2179 | bdev_logical_block_size(rdev->bdev) >> 9); |
| 2180 | sector = r1_bio->sector; |
| 2181 | sectors = ((sector + block_sectors) |
| 2182 | & ~(sector_t)(block_sectors - 1)) |
| 2183 | - sector; |
| 2184 | |
| 2185 | while (sect_to_write) { |
| 2186 | struct bio *wbio; |
| 2187 | if (sectors > sect_to_write) |
| 2188 | sectors = sect_to_write; |
| 2189 | /* Write at 'sector' for 'sectors'*/ |
| 2190 | |
| 2191 | if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { |
| 2192 | unsigned vcnt = r1_bio->behind_page_count; |
| 2193 | struct bio_vec *vec = r1_bio->behind_bvecs; |
| 2194 | |
| 2195 | while (!vec->bv_page) { |
| 2196 | vec++; |
| 2197 | vcnt--; |
| 2198 | } |
| 2199 | |
| 2200 | wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); |
| 2201 | memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); |
| 2202 | |
| 2203 | wbio->bi_vcnt = vcnt; |
| 2204 | } else { |
| 2205 | wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); |
| 2206 | } |
| 2207 | |
| 2208 | wbio->bi_rw = WRITE; |
| 2209 | wbio->bi_iter.bi_sector = r1_bio->sector; |
| 2210 | wbio->bi_iter.bi_size = r1_bio->sectors << 9; |
| 2211 | |
| 2212 | bio_trim(wbio, sector - r1_bio->sector, sectors); |
| 2213 | wbio->bi_iter.bi_sector += rdev->data_offset; |
| 2214 | wbio->bi_bdev = rdev->bdev; |
| 2215 | if (submit_bio_wait(WRITE, wbio) < 0) |
| 2216 | /* failure! */ |
| 2217 | ok = rdev_set_badblocks(rdev, sector, |
| 2218 | sectors, 0) |
| 2219 | && ok; |
| 2220 | |
| 2221 | bio_put(wbio); |
| 2222 | sect_to_write -= sectors; |
| 2223 | sector += sectors; |
| 2224 | sectors = block_sectors; |
| 2225 | } |
| 2226 | return ok; |
| 2227 | } |
| 2228 | |
| 2229 | static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) |
| 2230 | { |
| 2231 | int m; |
| 2232 | int s = r1_bio->sectors; |
| 2233 | for (m = 0; m < conf->raid_disks * 2 ; m++) { |
| 2234 | struct md_rdev *rdev = conf->mirrors[m].rdev; |
| 2235 | struct bio *bio = r1_bio->bios[m]; |
| 2236 | if (bio->bi_end_io == NULL) |
| 2237 | continue; |
| 2238 | if (!bio->bi_error && |
| 2239 | test_bit(R1BIO_MadeGood, &r1_bio->state)) { |
| 2240 | rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); |
| 2241 | } |
| 2242 | if (bio->bi_error && |
| 2243 | test_bit(R1BIO_WriteError, &r1_bio->state)) { |
| 2244 | if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) |
| 2245 | md_error(conf->mddev, rdev); |
| 2246 | } |
| 2247 | } |
| 2248 | put_buf(r1_bio); |
| 2249 | md_done_sync(conf->mddev, s, 1); |
| 2250 | } |
| 2251 | |
| 2252 | static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) |
| 2253 | { |
| 2254 | int m; |
| 2255 | bool fail = false; |
| 2256 | for (m = 0; m < conf->raid_disks * 2 ; m++) |
| 2257 | if (r1_bio->bios[m] == IO_MADE_GOOD) { |
| 2258 | struct md_rdev *rdev = conf->mirrors[m].rdev; |
| 2259 | rdev_clear_badblocks(rdev, |
| 2260 | r1_bio->sector, |
| 2261 | r1_bio->sectors, 0); |
| 2262 | rdev_dec_pending(rdev, conf->mddev); |
| 2263 | } else if (r1_bio->bios[m] != NULL) { |
| 2264 | /* This drive got a write error. We need to |
| 2265 | * narrow down and record precise write |
| 2266 | * errors. |
| 2267 | */ |
| 2268 | fail = true; |
| 2269 | if (!narrow_write_error(r1_bio, m)) { |
| 2270 | md_error(conf->mddev, |
| 2271 | conf->mirrors[m].rdev); |
| 2272 | /* an I/O failed, we can't clear the bitmap */ |
| 2273 | set_bit(R1BIO_Degraded, &r1_bio->state); |
| 2274 | } |
| 2275 | rdev_dec_pending(conf->mirrors[m].rdev, |
| 2276 | conf->mddev); |
| 2277 | } |
| 2278 | if (fail) { |
| 2279 | spin_lock_irq(&conf->device_lock); |
| 2280 | list_add(&r1_bio->retry_list, &conf->bio_end_io_list); |
| 2281 | conf->nr_queued++; |
| 2282 | spin_unlock_irq(&conf->device_lock); |
| 2283 | md_wakeup_thread(conf->mddev->thread); |
| 2284 | } else { |
| 2285 | if (test_bit(R1BIO_WriteError, &r1_bio->state)) |
| 2286 | close_write(r1_bio); |
| 2287 | raid_end_bio_io(r1_bio); |
| 2288 | } |
| 2289 | } |
| 2290 | |
| 2291 | static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) |
| 2292 | { |
| 2293 | int disk; |
| 2294 | int max_sectors; |
| 2295 | struct mddev *mddev = conf->mddev; |
| 2296 | struct bio *bio; |
| 2297 | char b[BDEVNAME_SIZE]; |
| 2298 | struct md_rdev *rdev; |
| 2299 | |
| 2300 | clear_bit(R1BIO_ReadError, &r1_bio->state); |
| 2301 | /* we got a read error. Maybe the drive is bad. Maybe just |
| 2302 | * the block and we can fix it. |
| 2303 | * We freeze all other IO, and try reading the block from |
| 2304 | * other devices. When we find one, we re-write |
| 2305 | * and check it that fixes the read error. |
| 2306 | * This is all done synchronously while the array is |
| 2307 | * frozen |
| 2308 | */ |
| 2309 | if (mddev->ro == 0) { |
| 2310 | freeze_array(conf, 1); |
| 2311 | fix_read_error(conf, r1_bio->read_disk, |
| 2312 | r1_bio->sector, r1_bio->sectors); |
| 2313 | unfreeze_array(conf); |
| 2314 | } else |
| 2315 | md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); |
| 2316 | rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); |
| 2317 | |
| 2318 | bio = r1_bio->bios[r1_bio->read_disk]; |
| 2319 | bdevname(bio->bi_bdev, b); |
| 2320 | read_more: |
| 2321 | disk = read_balance(conf, r1_bio, &max_sectors); |
| 2322 | if (disk == -1) { |
| 2323 | printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" |
| 2324 | " read error for block %llu\n", |
| 2325 | mdname(mddev), b, (unsigned long long)r1_bio->sector); |
| 2326 | raid_end_bio_io(r1_bio); |
| 2327 | } else { |
| 2328 | const unsigned long do_sync |
| 2329 | = r1_bio->master_bio->bi_rw & REQ_SYNC; |
| 2330 | if (bio) { |
| 2331 | r1_bio->bios[r1_bio->read_disk] = |
| 2332 | mddev->ro ? IO_BLOCKED : NULL; |
| 2333 | bio_put(bio); |
| 2334 | } |
| 2335 | r1_bio->read_disk = disk; |
| 2336 | bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); |
| 2337 | bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector, |
| 2338 | max_sectors); |
| 2339 | r1_bio->bios[r1_bio->read_disk] = bio; |
| 2340 | rdev = conf->mirrors[disk].rdev; |
| 2341 | printk_ratelimited(KERN_ERR |
| 2342 | "md/raid1:%s: redirecting sector %llu" |
| 2343 | " to other mirror: %s\n", |
| 2344 | mdname(mddev), |
| 2345 | (unsigned long long)r1_bio->sector, |
| 2346 | bdevname(rdev->bdev, b)); |
| 2347 | bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset; |
| 2348 | bio->bi_bdev = rdev->bdev; |
| 2349 | bio->bi_end_io = raid1_end_read_request; |
| 2350 | bio->bi_rw = READ | do_sync; |
| 2351 | bio->bi_private = r1_bio; |
| 2352 | if (max_sectors < r1_bio->sectors) { |
| 2353 | /* Drat - have to split this up more */ |
| 2354 | struct bio *mbio = r1_bio->master_bio; |
| 2355 | int sectors_handled = (r1_bio->sector + max_sectors |
| 2356 | - mbio->bi_iter.bi_sector); |
| 2357 | r1_bio->sectors = max_sectors; |
| 2358 | spin_lock_irq(&conf->device_lock); |
| 2359 | if (mbio->bi_phys_segments == 0) |
| 2360 | mbio->bi_phys_segments = 2; |
| 2361 | else |
| 2362 | mbio->bi_phys_segments++; |
| 2363 | spin_unlock_irq(&conf->device_lock); |
| 2364 | generic_make_request(bio); |
| 2365 | bio = NULL; |
| 2366 | |
| 2367 | r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); |
| 2368 | |
| 2369 | r1_bio->master_bio = mbio; |
| 2370 | r1_bio->sectors = bio_sectors(mbio) - sectors_handled; |
| 2371 | r1_bio->state = 0; |
| 2372 | set_bit(R1BIO_ReadError, &r1_bio->state); |
| 2373 | r1_bio->mddev = mddev; |
| 2374 | r1_bio->sector = mbio->bi_iter.bi_sector + |
| 2375 | sectors_handled; |
| 2376 | |
| 2377 | goto read_more; |
| 2378 | } else |
| 2379 | generic_make_request(bio); |
| 2380 | } |
| 2381 | } |
| 2382 | |
| 2383 | static void raid1d(struct md_thread *thread) |
| 2384 | { |
| 2385 | struct mddev *mddev = thread->mddev; |
| 2386 | struct r1bio *r1_bio; |
| 2387 | unsigned long flags; |
| 2388 | struct r1conf *conf = mddev->private; |
| 2389 | struct list_head *head = &conf->retry_list; |
| 2390 | struct blk_plug plug; |
| 2391 | |
| 2392 | md_check_recovery(mddev); |
| 2393 | |
| 2394 | if (!list_empty_careful(&conf->bio_end_io_list) && |
| 2395 | !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { |
| 2396 | LIST_HEAD(tmp); |
| 2397 | spin_lock_irqsave(&conf->device_lock, flags); |
| 2398 | if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { |
| 2399 | while (!list_empty(&conf->bio_end_io_list)) { |
| 2400 | list_move(conf->bio_end_io_list.prev, &tmp); |
| 2401 | conf->nr_queued--; |
| 2402 | } |
| 2403 | } |
| 2404 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 2405 | while (!list_empty(&tmp)) { |
| 2406 | r1_bio = list_first_entry(&tmp, struct r1bio, |
| 2407 | retry_list); |
| 2408 | list_del(&r1_bio->retry_list); |
| 2409 | if (mddev->degraded) |
| 2410 | set_bit(R1BIO_Degraded, &r1_bio->state); |
| 2411 | if (test_bit(R1BIO_WriteError, &r1_bio->state)) |
| 2412 | close_write(r1_bio); |
| 2413 | raid_end_bio_io(r1_bio); |
| 2414 | } |
| 2415 | } |
| 2416 | |
| 2417 | blk_start_plug(&plug); |
| 2418 | for (;;) { |
| 2419 | |
| 2420 | flush_pending_writes(conf); |
| 2421 | |
| 2422 | spin_lock_irqsave(&conf->device_lock, flags); |
| 2423 | if (list_empty(head)) { |
| 2424 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 2425 | break; |
| 2426 | } |
| 2427 | r1_bio = list_entry(head->prev, struct r1bio, retry_list); |
| 2428 | list_del(head->prev); |
| 2429 | conf->nr_queued--; |
| 2430 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 2431 | |
| 2432 | mddev = r1_bio->mddev; |
| 2433 | conf = mddev->private; |
| 2434 | if (test_bit(R1BIO_IsSync, &r1_bio->state)) { |
| 2435 | if (test_bit(R1BIO_MadeGood, &r1_bio->state) || |
| 2436 | test_bit(R1BIO_WriteError, &r1_bio->state)) |
| 2437 | handle_sync_write_finished(conf, r1_bio); |
| 2438 | else |
| 2439 | sync_request_write(mddev, r1_bio); |
| 2440 | } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || |
| 2441 | test_bit(R1BIO_WriteError, &r1_bio->state)) |
| 2442 | handle_write_finished(conf, r1_bio); |
| 2443 | else if (test_bit(R1BIO_ReadError, &r1_bio->state)) |
| 2444 | handle_read_error(conf, r1_bio); |
| 2445 | else |
| 2446 | /* just a partial read to be scheduled from separate |
| 2447 | * context |
| 2448 | */ |
| 2449 | generic_make_request(r1_bio->bios[r1_bio->read_disk]); |
| 2450 | |
| 2451 | cond_resched(); |
| 2452 | if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) |
| 2453 | md_check_recovery(mddev); |
| 2454 | } |
| 2455 | blk_finish_plug(&plug); |
| 2456 | } |
| 2457 | |
| 2458 | static int init_resync(struct r1conf *conf) |
| 2459 | { |
| 2460 | int buffs; |
| 2461 | |
| 2462 | buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; |
| 2463 | BUG_ON(conf->r1buf_pool); |
| 2464 | conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, |
| 2465 | conf->poolinfo); |
| 2466 | if (!conf->r1buf_pool) |
| 2467 | return -ENOMEM; |
| 2468 | conf->next_resync = 0; |
| 2469 | return 0; |
| 2470 | } |
| 2471 | |
| 2472 | /* |
| 2473 | * perform a "sync" on one "block" |
| 2474 | * |
| 2475 | * We need to make sure that no normal I/O request - particularly write |
| 2476 | * requests - conflict with active sync requests. |
| 2477 | * |
| 2478 | * This is achieved by tracking pending requests and a 'barrier' concept |
| 2479 | * that can be installed to exclude normal IO requests. |
| 2480 | */ |
| 2481 | |
| 2482 | static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped) |
| 2483 | { |
| 2484 | struct r1conf *conf = mddev->private; |
| 2485 | struct r1bio *r1_bio; |
| 2486 | struct bio *bio; |
| 2487 | sector_t max_sector, nr_sectors; |
| 2488 | int disk = -1; |
| 2489 | int i; |
| 2490 | int wonly = -1; |
| 2491 | int write_targets = 0, read_targets = 0; |
| 2492 | sector_t sync_blocks; |
| 2493 | int still_degraded = 0; |
| 2494 | int good_sectors = RESYNC_SECTORS; |
| 2495 | int min_bad = 0; /* number of sectors that are bad in all devices */ |
| 2496 | |
| 2497 | if (!conf->r1buf_pool) |
| 2498 | if (init_resync(conf)) |
| 2499 | return 0; |
| 2500 | |
| 2501 | max_sector = mddev->dev_sectors; |
| 2502 | if (sector_nr >= max_sector) { |
| 2503 | /* If we aborted, we need to abort the |
| 2504 | * sync on the 'current' bitmap chunk (there will |
| 2505 | * only be one in raid1 resync. |
| 2506 | * We can find the current addess in mddev->curr_resync |
| 2507 | */ |
| 2508 | if (mddev->curr_resync < max_sector) /* aborted */ |
| 2509 | bitmap_end_sync(mddev->bitmap, mddev->curr_resync, |
| 2510 | &sync_blocks, 1); |
| 2511 | else /* completed sync */ |
| 2512 | conf->fullsync = 0; |
| 2513 | |
| 2514 | bitmap_close_sync(mddev->bitmap); |
| 2515 | close_sync(conf); |
| 2516 | |
| 2517 | if (mddev_is_clustered(mddev)) { |
| 2518 | conf->cluster_sync_low = 0; |
| 2519 | conf->cluster_sync_high = 0; |
| 2520 | } |
| 2521 | return 0; |
| 2522 | } |
| 2523 | |
| 2524 | if (mddev->bitmap == NULL && |
| 2525 | mddev->recovery_cp == MaxSector && |
| 2526 | !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && |
| 2527 | conf->fullsync == 0) { |
| 2528 | *skipped = 1; |
| 2529 | return max_sector - sector_nr; |
| 2530 | } |
| 2531 | /* before building a request, check if we can skip these blocks.. |
| 2532 | * This call the bitmap_start_sync doesn't actually record anything |
| 2533 | */ |
| 2534 | if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && |
| 2535 | !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { |
| 2536 | /* We can skip this block, and probably several more */ |
| 2537 | *skipped = 1; |
| 2538 | return sync_blocks; |
| 2539 | } |
| 2540 | |
| 2541 | /* we are incrementing sector_nr below. To be safe, we check against |
| 2542 | * sector_nr + two times RESYNC_SECTORS |
| 2543 | */ |
| 2544 | |
| 2545 | bitmap_cond_end_sync(mddev->bitmap, sector_nr, |
| 2546 | mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); |
| 2547 | r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); |
| 2548 | |
| 2549 | raise_barrier(conf, sector_nr); |
| 2550 | |
| 2551 | rcu_read_lock(); |
| 2552 | /* |
| 2553 | * If we get a correctably read error during resync or recovery, |
| 2554 | * we might want to read from a different device. So we |
| 2555 | * flag all drives that could conceivably be read from for READ, |
| 2556 | * and any others (which will be non-In_sync devices) for WRITE. |
| 2557 | * If a read fails, we try reading from something else for which READ |
| 2558 | * is OK. |
| 2559 | */ |
| 2560 | |
| 2561 | r1_bio->mddev = mddev; |
| 2562 | r1_bio->sector = sector_nr; |
| 2563 | r1_bio->state = 0; |
| 2564 | set_bit(R1BIO_IsSync, &r1_bio->state); |
| 2565 | |
| 2566 | for (i = 0; i < conf->raid_disks * 2; i++) { |
| 2567 | struct md_rdev *rdev; |
| 2568 | bio = r1_bio->bios[i]; |
| 2569 | bio_reset(bio); |
| 2570 | |
| 2571 | rdev = rcu_dereference(conf->mirrors[i].rdev); |
| 2572 | if (rdev == NULL || |
| 2573 | test_bit(Faulty, &rdev->flags)) { |
| 2574 | if (i < conf->raid_disks) |
| 2575 | still_degraded = 1; |
| 2576 | } else if (!test_bit(In_sync, &rdev->flags)) { |
| 2577 | bio->bi_rw = WRITE; |
| 2578 | bio->bi_end_io = end_sync_write; |
| 2579 | write_targets ++; |
| 2580 | } else { |
| 2581 | /* may need to read from here */ |
| 2582 | sector_t first_bad = MaxSector; |
| 2583 | int bad_sectors; |
| 2584 | |
| 2585 | if (is_badblock(rdev, sector_nr, good_sectors, |
| 2586 | &first_bad, &bad_sectors)) { |
| 2587 | if (first_bad > sector_nr) |
| 2588 | good_sectors = first_bad - sector_nr; |
| 2589 | else { |
| 2590 | bad_sectors -= (sector_nr - first_bad); |
| 2591 | if (min_bad == 0 || |
| 2592 | min_bad > bad_sectors) |
| 2593 | min_bad = bad_sectors; |
| 2594 | } |
| 2595 | } |
| 2596 | if (sector_nr < first_bad) { |
| 2597 | if (test_bit(WriteMostly, &rdev->flags)) { |
| 2598 | if (wonly < 0) |
| 2599 | wonly = i; |
| 2600 | } else { |
| 2601 | if (disk < 0) |
| 2602 | disk = i; |
| 2603 | } |
| 2604 | bio->bi_rw = READ; |
| 2605 | bio->bi_end_io = end_sync_read; |
| 2606 | read_targets++; |
| 2607 | } else if (!test_bit(WriteErrorSeen, &rdev->flags) && |
| 2608 | test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && |
| 2609 | !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { |
| 2610 | /* |
| 2611 | * The device is suitable for reading (InSync), |
| 2612 | * but has bad block(s) here. Let's try to correct them, |
| 2613 | * if we are doing resync or repair. Otherwise, leave |
| 2614 | * this device alone for this sync request. |
| 2615 | */ |
| 2616 | bio->bi_rw = WRITE; |
| 2617 | bio->bi_end_io = end_sync_write; |
| 2618 | write_targets++; |
| 2619 | } |
| 2620 | } |
| 2621 | if (bio->bi_end_io) { |
| 2622 | atomic_inc(&rdev->nr_pending); |
| 2623 | bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; |
| 2624 | bio->bi_bdev = rdev->bdev; |
| 2625 | bio->bi_private = r1_bio; |
| 2626 | } |
| 2627 | } |
| 2628 | rcu_read_unlock(); |
| 2629 | if (disk < 0) |
| 2630 | disk = wonly; |
| 2631 | r1_bio->read_disk = disk; |
| 2632 | |
| 2633 | if (read_targets == 0 && min_bad > 0) { |
| 2634 | /* These sectors are bad on all InSync devices, so we |
| 2635 | * need to mark them bad on all write targets |
| 2636 | */ |
| 2637 | int ok = 1; |
| 2638 | for (i = 0 ; i < conf->raid_disks * 2 ; i++) |
| 2639 | if (r1_bio->bios[i]->bi_end_io == end_sync_write) { |
| 2640 | struct md_rdev *rdev = conf->mirrors[i].rdev; |
| 2641 | ok = rdev_set_badblocks(rdev, sector_nr, |
| 2642 | min_bad, 0 |
| 2643 | ) && ok; |
| 2644 | } |
| 2645 | set_bit(MD_CHANGE_DEVS, &mddev->flags); |
| 2646 | *skipped = 1; |
| 2647 | put_buf(r1_bio); |
| 2648 | |
| 2649 | if (!ok) { |
| 2650 | /* Cannot record the badblocks, so need to |
| 2651 | * abort the resync. |
| 2652 | * If there are multiple read targets, could just |
| 2653 | * fail the really bad ones ??? |
| 2654 | */ |
| 2655 | conf->recovery_disabled = mddev->recovery_disabled; |
| 2656 | set_bit(MD_RECOVERY_INTR, &mddev->recovery); |
| 2657 | return 0; |
| 2658 | } else |
| 2659 | return min_bad; |
| 2660 | |
| 2661 | } |
| 2662 | if (min_bad > 0 && min_bad < good_sectors) { |
| 2663 | /* only resync enough to reach the next bad->good |
| 2664 | * transition */ |
| 2665 | good_sectors = min_bad; |
| 2666 | } |
| 2667 | |
| 2668 | if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) |
| 2669 | /* extra read targets are also write targets */ |
| 2670 | write_targets += read_targets-1; |
| 2671 | |
| 2672 | if (write_targets == 0 || read_targets == 0) { |
| 2673 | /* There is nowhere to write, so all non-sync |
| 2674 | * drives must be failed - so we are finished |
| 2675 | */ |
| 2676 | sector_t rv; |
| 2677 | if (min_bad > 0) |
| 2678 | max_sector = sector_nr + min_bad; |
| 2679 | rv = max_sector - sector_nr; |
| 2680 | *skipped = 1; |
| 2681 | put_buf(r1_bio); |
| 2682 | return rv; |
| 2683 | } |
| 2684 | |
| 2685 | if (max_sector > mddev->resync_max) |
| 2686 | max_sector = mddev->resync_max; /* Don't do IO beyond here */ |
| 2687 | if (max_sector > sector_nr + good_sectors) |
| 2688 | max_sector = sector_nr + good_sectors; |
| 2689 | nr_sectors = 0; |
| 2690 | sync_blocks = 0; |
| 2691 | do { |
| 2692 | struct page *page; |
| 2693 | int len = PAGE_SIZE; |
| 2694 | if (sector_nr + (len>>9) > max_sector) |
| 2695 | len = (max_sector - sector_nr) << 9; |
| 2696 | if (len == 0) |
| 2697 | break; |
| 2698 | if (sync_blocks == 0) { |
| 2699 | if (!bitmap_start_sync(mddev->bitmap, sector_nr, |
| 2700 | &sync_blocks, still_degraded) && |
| 2701 | !conf->fullsync && |
| 2702 | !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) |
| 2703 | break; |
| 2704 | BUG_ON(sync_blocks < (PAGE_SIZE>>9)); |
| 2705 | if ((len >> 9) > sync_blocks) |
| 2706 | len = sync_blocks<<9; |
| 2707 | } |
| 2708 | |
| 2709 | for (i = 0 ; i < conf->raid_disks * 2; i++) { |
| 2710 | bio = r1_bio->bios[i]; |
| 2711 | if (bio->bi_end_io) { |
| 2712 | page = bio->bi_io_vec[bio->bi_vcnt].bv_page; |
| 2713 | if (bio_add_page(bio, page, len, 0) == 0) { |
| 2714 | /* stop here */ |
| 2715 | bio->bi_io_vec[bio->bi_vcnt].bv_page = page; |
| 2716 | while (i > 0) { |
| 2717 | i--; |
| 2718 | bio = r1_bio->bios[i]; |
| 2719 | if (bio->bi_end_io==NULL) |
| 2720 | continue; |
| 2721 | /* remove last page from this bio */ |
| 2722 | bio->bi_vcnt--; |
| 2723 | bio->bi_iter.bi_size -= len; |
| 2724 | bio_clear_flag(bio, BIO_SEG_VALID); |
| 2725 | } |
| 2726 | goto bio_full; |
| 2727 | } |
| 2728 | } |
| 2729 | } |
| 2730 | nr_sectors += len>>9; |
| 2731 | sector_nr += len>>9; |
| 2732 | sync_blocks -= (len>>9); |
| 2733 | } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); |
| 2734 | bio_full: |
| 2735 | r1_bio->sectors = nr_sectors; |
| 2736 | |
| 2737 | if (mddev_is_clustered(mddev) && |
| 2738 | conf->cluster_sync_high < sector_nr + nr_sectors) { |
| 2739 | conf->cluster_sync_low = mddev->curr_resync_completed; |
| 2740 | conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; |
| 2741 | /* Send resync message */ |
| 2742 | md_cluster_ops->resync_info_update(mddev, |
| 2743 | conf->cluster_sync_low, |
| 2744 | conf->cluster_sync_high); |
| 2745 | } |
| 2746 | |
| 2747 | /* For a user-requested sync, we read all readable devices and do a |
| 2748 | * compare |
| 2749 | */ |
| 2750 | if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { |
| 2751 | atomic_set(&r1_bio->remaining, read_targets); |
| 2752 | for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { |
| 2753 | bio = r1_bio->bios[i]; |
| 2754 | if (bio->bi_end_io == end_sync_read) { |
| 2755 | read_targets--; |
| 2756 | md_sync_acct(bio->bi_bdev, nr_sectors); |
| 2757 | generic_make_request(bio); |
| 2758 | } |
| 2759 | } |
| 2760 | } else { |
| 2761 | atomic_set(&r1_bio->remaining, 1); |
| 2762 | bio = r1_bio->bios[r1_bio->read_disk]; |
| 2763 | md_sync_acct(bio->bi_bdev, nr_sectors); |
| 2764 | generic_make_request(bio); |
| 2765 | |
| 2766 | } |
| 2767 | return nr_sectors; |
| 2768 | } |
| 2769 | |
| 2770 | static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) |
| 2771 | { |
| 2772 | if (sectors) |
| 2773 | return sectors; |
| 2774 | |
| 2775 | return mddev->dev_sectors; |
| 2776 | } |
| 2777 | |
| 2778 | static struct r1conf *setup_conf(struct mddev *mddev) |
| 2779 | { |
| 2780 | struct r1conf *conf; |
| 2781 | int i; |
| 2782 | struct raid1_info *disk; |
| 2783 | struct md_rdev *rdev; |
| 2784 | int err = -ENOMEM; |
| 2785 | |
| 2786 | conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); |
| 2787 | if (!conf) |
| 2788 | goto abort; |
| 2789 | |
| 2790 | conf->mirrors = kzalloc(sizeof(struct raid1_info) |
| 2791 | * mddev->raid_disks * 2, |
| 2792 | GFP_KERNEL); |
| 2793 | if (!conf->mirrors) |
| 2794 | goto abort; |
| 2795 | |
| 2796 | conf->tmppage = alloc_page(GFP_KERNEL); |
| 2797 | if (!conf->tmppage) |
| 2798 | goto abort; |
| 2799 | |
| 2800 | conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); |
| 2801 | if (!conf->poolinfo) |
| 2802 | goto abort; |
| 2803 | conf->poolinfo->raid_disks = mddev->raid_disks * 2; |
| 2804 | conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, |
| 2805 | r1bio_pool_free, |
| 2806 | conf->poolinfo); |
| 2807 | if (!conf->r1bio_pool) |
| 2808 | goto abort; |
| 2809 | |
| 2810 | conf->poolinfo->mddev = mddev; |
| 2811 | |
| 2812 | err = -EINVAL; |
| 2813 | spin_lock_init(&conf->device_lock); |
| 2814 | rdev_for_each(rdev, mddev) { |
| 2815 | struct request_queue *q; |
| 2816 | int disk_idx = rdev->raid_disk; |
| 2817 | if (disk_idx >= mddev->raid_disks |
| 2818 | || disk_idx < 0) |
| 2819 | continue; |
| 2820 | if (test_bit(Replacement, &rdev->flags)) |
| 2821 | disk = conf->mirrors + mddev->raid_disks + disk_idx; |
| 2822 | else |
| 2823 | disk = conf->mirrors + disk_idx; |
| 2824 | |
| 2825 | if (disk->rdev) |
| 2826 | goto abort; |
| 2827 | disk->rdev = rdev; |
| 2828 | q = bdev_get_queue(rdev->bdev); |
| 2829 | |
| 2830 | disk->head_position = 0; |
| 2831 | disk->seq_start = MaxSector; |
| 2832 | } |
| 2833 | conf->raid_disks = mddev->raid_disks; |
| 2834 | conf->mddev = mddev; |
| 2835 | INIT_LIST_HEAD(&conf->retry_list); |
| 2836 | INIT_LIST_HEAD(&conf->bio_end_io_list); |
| 2837 | |
| 2838 | spin_lock_init(&conf->resync_lock); |
| 2839 | init_waitqueue_head(&conf->wait_barrier); |
| 2840 | |
| 2841 | bio_list_init(&conf->pending_bio_list); |
| 2842 | conf->pending_count = 0; |
| 2843 | conf->recovery_disabled = mddev->recovery_disabled - 1; |
| 2844 | |
| 2845 | conf->start_next_window = MaxSector; |
| 2846 | conf->current_window_requests = conf->next_window_requests = 0; |
| 2847 | |
| 2848 | err = -EIO; |
| 2849 | for (i = 0; i < conf->raid_disks * 2; i++) { |
| 2850 | |
| 2851 | disk = conf->mirrors + i; |
| 2852 | |
| 2853 | if (i < conf->raid_disks && |
| 2854 | disk[conf->raid_disks].rdev) { |
| 2855 | /* This slot has a replacement. */ |
| 2856 | if (!disk->rdev) { |
| 2857 | /* No original, just make the replacement |
| 2858 | * a recovering spare |
| 2859 | */ |
| 2860 | disk->rdev = |
| 2861 | disk[conf->raid_disks].rdev; |
| 2862 | disk[conf->raid_disks].rdev = NULL; |
| 2863 | } else if (!test_bit(In_sync, &disk->rdev->flags)) |
| 2864 | /* Original is not in_sync - bad */ |
| 2865 | goto abort; |
| 2866 | } |
| 2867 | |
| 2868 | if (!disk->rdev || |
| 2869 | !test_bit(In_sync, &disk->rdev->flags)) { |
| 2870 | disk->head_position = 0; |
| 2871 | if (disk->rdev && |
| 2872 | (disk->rdev->saved_raid_disk < 0)) |
| 2873 | conf->fullsync = 1; |
| 2874 | } |
| 2875 | } |
| 2876 | |
| 2877 | err = -ENOMEM; |
| 2878 | conf->thread = md_register_thread(raid1d, mddev, "raid1"); |
| 2879 | if (!conf->thread) { |
| 2880 | printk(KERN_ERR |
| 2881 | "md/raid1:%s: couldn't allocate thread\n", |
| 2882 | mdname(mddev)); |
| 2883 | goto abort; |
| 2884 | } |
| 2885 | |
| 2886 | return conf; |
| 2887 | |
| 2888 | abort: |
| 2889 | if (conf) { |
| 2890 | mempool_destroy(conf->r1bio_pool); |
| 2891 | kfree(conf->mirrors); |
| 2892 | safe_put_page(conf->tmppage); |
| 2893 | kfree(conf->poolinfo); |
| 2894 | kfree(conf); |
| 2895 | } |
| 2896 | return ERR_PTR(err); |
| 2897 | } |
| 2898 | |
| 2899 | static void raid1_free(struct mddev *mddev, void *priv); |
| 2900 | static int run(struct mddev *mddev) |
| 2901 | { |
| 2902 | struct r1conf *conf; |
| 2903 | int i; |
| 2904 | struct md_rdev *rdev; |
| 2905 | int ret; |
| 2906 | bool discard_supported = false; |
| 2907 | |
| 2908 | if (mddev->level != 1) { |
| 2909 | printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", |
| 2910 | mdname(mddev), mddev->level); |
| 2911 | return -EIO; |
| 2912 | } |
| 2913 | if (mddev->reshape_position != MaxSector) { |
| 2914 | printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", |
| 2915 | mdname(mddev)); |
| 2916 | return -EIO; |
| 2917 | } |
| 2918 | /* |
| 2919 | * copy the already verified devices into our private RAID1 |
| 2920 | * bookkeeping area. [whatever we allocate in run(), |
| 2921 | * should be freed in raid1_free()] |
| 2922 | */ |
| 2923 | if (mddev->private == NULL) |
| 2924 | conf = setup_conf(mddev); |
| 2925 | else |
| 2926 | conf = mddev->private; |
| 2927 | |
| 2928 | if (IS_ERR(conf)) |
| 2929 | return PTR_ERR(conf); |
| 2930 | |
| 2931 | if (mddev->queue) |
| 2932 | blk_queue_max_write_same_sectors(mddev->queue, 0); |
| 2933 | |
| 2934 | rdev_for_each(rdev, mddev) { |
| 2935 | if (!mddev->gendisk) |
| 2936 | continue; |
| 2937 | disk_stack_limits(mddev->gendisk, rdev->bdev, |
| 2938 | rdev->data_offset << 9); |
| 2939 | if (blk_queue_discard(bdev_get_queue(rdev->bdev))) |
| 2940 | discard_supported = true; |
| 2941 | } |
| 2942 | |
| 2943 | mddev->degraded = 0; |
| 2944 | for (i=0; i < conf->raid_disks; i++) |
| 2945 | if (conf->mirrors[i].rdev == NULL || |
| 2946 | !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || |
| 2947 | test_bit(Faulty, &conf->mirrors[i].rdev->flags)) |
| 2948 | mddev->degraded++; |
| 2949 | |
| 2950 | if (conf->raid_disks - mddev->degraded == 1) |
| 2951 | mddev->recovery_cp = MaxSector; |
| 2952 | |
| 2953 | if (mddev->recovery_cp != MaxSector) |
| 2954 | printk(KERN_NOTICE "md/raid1:%s: not clean" |
| 2955 | " -- starting background reconstruction\n", |
| 2956 | mdname(mddev)); |
| 2957 | printk(KERN_INFO |
| 2958 | "md/raid1:%s: active with %d out of %d mirrors\n", |
| 2959 | mdname(mddev), mddev->raid_disks - mddev->degraded, |
| 2960 | mddev->raid_disks); |
| 2961 | |
| 2962 | /* |
| 2963 | * Ok, everything is just fine now |
| 2964 | */ |
| 2965 | mddev->thread = conf->thread; |
| 2966 | conf->thread = NULL; |
| 2967 | mddev->private = conf; |
| 2968 | |
| 2969 | md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); |
| 2970 | |
| 2971 | if (mddev->queue) { |
| 2972 | if (discard_supported) |
| 2973 | queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, |
| 2974 | mddev->queue); |
| 2975 | else |
| 2976 | queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, |
| 2977 | mddev->queue); |
| 2978 | } |
| 2979 | |
| 2980 | ret = md_integrity_register(mddev); |
| 2981 | if (ret) { |
| 2982 | md_unregister_thread(&mddev->thread); |
| 2983 | raid1_free(mddev, conf); |
| 2984 | } |
| 2985 | return ret; |
| 2986 | } |
| 2987 | |
| 2988 | static void raid1_free(struct mddev *mddev, void *priv) |
| 2989 | { |
| 2990 | struct r1conf *conf = priv; |
| 2991 | |
| 2992 | mempool_destroy(conf->r1bio_pool); |
| 2993 | kfree(conf->mirrors); |
| 2994 | safe_put_page(conf->tmppage); |
| 2995 | kfree(conf->poolinfo); |
| 2996 | kfree(conf); |
| 2997 | } |
| 2998 | |
| 2999 | static int raid1_resize(struct mddev *mddev, sector_t sectors) |
| 3000 | { |
| 3001 | /* no resync is happening, and there is enough space |
| 3002 | * on all devices, so we can resize. |
| 3003 | * We need to make sure resync covers any new space. |
| 3004 | * If the array is shrinking we should possibly wait until |
| 3005 | * any io in the removed space completes, but it hardly seems |
| 3006 | * worth it. |
| 3007 | */ |
| 3008 | sector_t newsize = raid1_size(mddev, sectors, 0); |
| 3009 | if (mddev->external_size && |
| 3010 | mddev->array_sectors > newsize) |
| 3011 | return -EINVAL; |
| 3012 | if (mddev->bitmap) { |
| 3013 | int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); |
| 3014 | if (ret) |
| 3015 | return ret; |
| 3016 | } |
| 3017 | md_set_array_sectors(mddev, newsize); |
| 3018 | set_capacity(mddev->gendisk, mddev->array_sectors); |
| 3019 | revalidate_disk(mddev->gendisk); |
| 3020 | if (sectors > mddev->dev_sectors && |
| 3021 | mddev->recovery_cp > mddev->dev_sectors) { |
| 3022 | mddev->recovery_cp = mddev->dev_sectors; |
| 3023 | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); |
| 3024 | } |
| 3025 | mddev->dev_sectors = sectors; |
| 3026 | mddev->resync_max_sectors = sectors; |
| 3027 | return 0; |
| 3028 | } |
| 3029 | |
| 3030 | static int raid1_reshape(struct mddev *mddev) |
| 3031 | { |
| 3032 | /* We need to: |
| 3033 | * 1/ resize the r1bio_pool |
| 3034 | * 2/ resize conf->mirrors |
| 3035 | * |
| 3036 | * We allocate a new r1bio_pool if we can. |
| 3037 | * Then raise a device barrier and wait until all IO stops. |
| 3038 | * Then resize conf->mirrors and swap in the new r1bio pool. |
| 3039 | * |
| 3040 | * At the same time, we "pack" the devices so that all the missing |
| 3041 | * devices have the higher raid_disk numbers. |
| 3042 | */ |
| 3043 | mempool_t *newpool, *oldpool; |
| 3044 | struct pool_info *newpoolinfo; |
| 3045 | struct raid1_info *newmirrors; |
| 3046 | struct r1conf *conf = mddev->private; |
| 3047 | int cnt, raid_disks; |
| 3048 | unsigned long flags; |
| 3049 | int d, d2, err; |
| 3050 | |
| 3051 | /* Cannot change chunk_size, layout, or level */ |
| 3052 | if (mddev->chunk_sectors != mddev->new_chunk_sectors || |
| 3053 | mddev->layout != mddev->new_layout || |
| 3054 | mddev->level != mddev->new_level) { |
| 3055 | mddev->new_chunk_sectors = mddev->chunk_sectors; |
| 3056 | mddev->new_layout = mddev->layout; |
| 3057 | mddev->new_level = mddev->level; |
| 3058 | return -EINVAL; |
| 3059 | } |
| 3060 | |
| 3061 | if (!mddev_is_clustered(mddev)) { |
| 3062 | err = md_allow_write(mddev); |
| 3063 | if (err) |
| 3064 | return err; |
| 3065 | } |
| 3066 | |
| 3067 | raid_disks = mddev->raid_disks + mddev->delta_disks; |
| 3068 | |
| 3069 | if (raid_disks < conf->raid_disks) { |
| 3070 | cnt=0; |
| 3071 | for (d= 0; d < conf->raid_disks; d++) |
| 3072 | if (conf->mirrors[d].rdev) |
| 3073 | cnt++; |
| 3074 | if (cnt > raid_disks) |
| 3075 | return -EBUSY; |
| 3076 | } |
| 3077 | |
| 3078 | newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); |
| 3079 | if (!newpoolinfo) |
| 3080 | return -ENOMEM; |
| 3081 | newpoolinfo->mddev = mddev; |
| 3082 | newpoolinfo->raid_disks = raid_disks * 2; |
| 3083 | |
| 3084 | newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, |
| 3085 | r1bio_pool_free, newpoolinfo); |
| 3086 | if (!newpool) { |
| 3087 | kfree(newpoolinfo); |
| 3088 | return -ENOMEM; |
| 3089 | } |
| 3090 | newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, |
| 3091 | GFP_KERNEL); |
| 3092 | if (!newmirrors) { |
| 3093 | kfree(newpoolinfo); |
| 3094 | mempool_destroy(newpool); |
| 3095 | return -ENOMEM; |
| 3096 | } |
| 3097 | |
| 3098 | freeze_array(conf, 0); |
| 3099 | |
| 3100 | /* ok, everything is stopped */ |
| 3101 | oldpool = conf->r1bio_pool; |
| 3102 | conf->r1bio_pool = newpool; |
| 3103 | |
| 3104 | for (d = d2 = 0; d < conf->raid_disks; d++) { |
| 3105 | struct md_rdev *rdev = conf->mirrors[d].rdev; |
| 3106 | if (rdev && rdev->raid_disk != d2) { |
| 3107 | sysfs_unlink_rdev(mddev, rdev); |
| 3108 | rdev->raid_disk = d2; |
| 3109 | sysfs_unlink_rdev(mddev, rdev); |
| 3110 | if (sysfs_link_rdev(mddev, rdev)) |
| 3111 | printk(KERN_WARNING |
| 3112 | "md/raid1:%s: cannot register rd%d\n", |
| 3113 | mdname(mddev), rdev->raid_disk); |
| 3114 | } |
| 3115 | if (rdev) |
| 3116 | newmirrors[d2++].rdev = rdev; |
| 3117 | } |
| 3118 | kfree(conf->mirrors); |
| 3119 | conf->mirrors = newmirrors; |
| 3120 | kfree(conf->poolinfo); |
| 3121 | conf->poolinfo = newpoolinfo; |
| 3122 | |
| 3123 | spin_lock_irqsave(&conf->device_lock, flags); |
| 3124 | mddev->degraded += (raid_disks - conf->raid_disks); |
| 3125 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 3126 | conf->raid_disks = mddev->raid_disks = raid_disks; |
| 3127 | mddev->delta_disks = 0; |
| 3128 | |
| 3129 | unfreeze_array(conf); |
| 3130 | |
| 3131 | set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); |
| 3132 | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); |
| 3133 | md_wakeup_thread(mddev->thread); |
| 3134 | |
| 3135 | mempool_destroy(oldpool); |
| 3136 | return 0; |
| 3137 | } |
| 3138 | |
| 3139 | static void raid1_quiesce(struct mddev *mddev, int state) |
| 3140 | { |
| 3141 | struct r1conf *conf = mddev->private; |
| 3142 | |
| 3143 | switch(state) { |
| 3144 | case 2: /* wake for suspend */ |
| 3145 | wake_up(&conf->wait_barrier); |
| 3146 | break; |
| 3147 | case 1: |
| 3148 | freeze_array(conf, 0); |
| 3149 | break; |
| 3150 | case 0: |
| 3151 | unfreeze_array(conf); |
| 3152 | break; |
| 3153 | } |
| 3154 | } |
| 3155 | |
| 3156 | static void *raid1_takeover(struct mddev *mddev) |
| 3157 | { |
| 3158 | /* raid1 can take over: |
| 3159 | * raid5 with 2 devices, any layout or chunk size |
| 3160 | */ |
| 3161 | if (mddev->level == 5 && mddev->raid_disks == 2) { |
| 3162 | struct r1conf *conf; |
| 3163 | mddev->new_level = 1; |
| 3164 | mddev->new_layout = 0; |
| 3165 | mddev->new_chunk_sectors = 0; |
| 3166 | conf = setup_conf(mddev); |
| 3167 | if (!IS_ERR(conf)) |
| 3168 | /* Array must appear to be quiesced */ |
| 3169 | conf->array_frozen = 1; |
| 3170 | return conf; |
| 3171 | } |
| 3172 | return ERR_PTR(-EINVAL); |
| 3173 | } |
| 3174 | |
| 3175 | static struct md_personality raid1_personality = |
| 3176 | { |
| 3177 | .name = "raid1", |
| 3178 | .level = 1, |
| 3179 | .owner = THIS_MODULE, |
| 3180 | .make_request = make_request, |
| 3181 | .run = run, |
| 3182 | .free = raid1_free, |
| 3183 | .status = status, |
| 3184 | .error_handler = error, |
| 3185 | .hot_add_disk = raid1_add_disk, |
| 3186 | .hot_remove_disk= raid1_remove_disk, |
| 3187 | .spare_active = raid1_spare_active, |
| 3188 | .sync_request = sync_request, |
| 3189 | .resize = raid1_resize, |
| 3190 | .size = raid1_size, |
| 3191 | .check_reshape = raid1_reshape, |
| 3192 | .quiesce = raid1_quiesce, |
| 3193 | .takeover = raid1_takeover, |
| 3194 | .congested = raid1_congested, |
| 3195 | }; |
| 3196 | |
| 3197 | static int __init raid_init(void) |
| 3198 | { |
| 3199 | return register_md_personality(&raid1_personality); |
| 3200 | } |
| 3201 | |
| 3202 | static void raid_exit(void) |
| 3203 | { |
| 3204 | unregister_md_personality(&raid1_personality); |
| 3205 | } |
| 3206 | |
| 3207 | module_init(raid_init); |
| 3208 | module_exit(raid_exit); |
| 3209 | MODULE_LICENSE("GPL"); |
| 3210 | MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); |
| 3211 | MODULE_ALIAS("md-personality-3"); /* RAID1 */ |
| 3212 | MODULE_ALIAS("md-raid1"); |
| 3213 | MODULE_ALIAS("md-level-1"); |
| 3214 | |
| 3215 | module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); |