blob: f24a9e14021d035b74d1678852cc4de589d9172c [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34#include <linux/slab.h>
35#include <linux/delay.h>
36#include <linux/blkdev.h>
37#include <linux/module.h>
38#include <linux/seq_file.h>
39#include <linux/ratelimit.h>
40#include "md.h"
41#include "raid1.h"
42#include "bitmap.h"
43
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
68
69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71static void lower_barrier(struct r1conf *conf);
72
73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74{
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
88#define RESYNC_DEPTH 32
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96
97static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98{
99 struct pool_info *pi = data;
100 struct r1bio *r1_bio;
101 struct bio *bio;
102 int need_pages;
103 int i, j;
104
105 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106 if (!r1_bio)
107 return NULL;
108
109 /*
110 * Allocate bios : 1 for reading, n-1 for writing
111 */
112 for (j = pi->raid_disks ; j-- ; ) {
113 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 if (!bio)
115 goto out_free_bio;
116 r1_bio->bios[j] = bio;
117 }
118 /*
119 * Allocate RESYNC_PAGES data pages and attach them to
120 * the first bio.
121 * If this is a user-requested check/repair, allocate
122 * RESYNC_PAGES for each bio.
123 */
124 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125 need_pages = pi->raid_disks;
126 else
127 need_pages = 1;
128 for (j = 0; j < need_pages; j++) {
129 bio = r1_bio->bios[j];
130 bio->bi_vcnt = RESYNC_PAGES;
131
132 if (bio_alloc_pages(bio, gfp_flags))
133 goto out_free_pages;
134 }
135 /* If not user-requests, copy the page pointers to all bios */
136 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 for (i=0; i<RESYNC_PAGES ; i++)
138 for (j=1; j<pi->raid_disks; j++)
139 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 }
142
143 r1_bio->master_bio = NULL;
144
145 return r1_bio;
146
147out_free_pages:
148 while (--j >= 0) {
149 struct bio_vec *bv;
150
151 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152 __free_page(bv->bv_page);
153 }
154
155out_free_bio:
156 while (++j < pi->raid_disks)
157 bio_put(r1_bio->bios[j]);
158 r1bio_pool_free(r1_bio, data);
159 return NULL;
160}
161
162static void r1buf_pool_free(void *__r1_bio, void *data)
163{
164 struct pool_info *pi = data;
165 int i,j;
166 struct r1bio *r1bio = __r1_bio;
167
168 for (i = 0; i < RESYNC_PAGES; i++)
169 for (j = pi->raid_disks; j-- ;) {
170 if (j == 0 ||
171 r1bio->bios[j]->bi_io_vec[i].bv_page !=
172 r1bio->bios[0]->bi_io_vec[i].bv_page)
173 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
174 }
175 for (i=0 ; i < pi->raid_disks; i++)
176 bio_put(r1bio->bios[i]);
177
178 r1bio_pool_free(r1bio, data);
179}
180
181static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
182{
183 int i;
184
185 for (i = 0; i < conf->raid_disks * 2; i++) {
186 struct bio **bio = r1_bio->bios + i;
187 if (!BIO_SPECIAL(*bio))
188 bio_put(*bio);
189 *bio = NULL;
190 }
191}
192
193static void free_r1bio(struct r1bio *r1_bio)
194{
195 struct r1conf *conf = r1_bio->mddev->private;
196
197 put_all_bios(conf, r1_bio);
198 mempool_free(r1_bio, conf->r1bio_pool);
199}
200
201static void put_buf(struct r1bio *r1_bio)
202{
203 struct r1conf *conf = r1_bio->mddev->private;
204 int i;
205
206 for (i = 0; i < conf->raid_disks * 2; i++) {
207 struct bio *bio = r1_bio->bios[i];
208 if (bio->bi_end_io)
209 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 }
211
212 mempool_free(r1_bio, conf->r1buf_pool);
213
214 lower_barrier(conf);
215}
216
217static void reschedule_retry(struct r1bio *r1_bio)
218{
219 unsigned long flags;
220 struct mddev *mddev = r1_bio->mddev;
221 struct r1conf *conf = mddev->private;
222
223 spin_lock_irqsave(&conf->device_lock, flags);
224 list_add(&r1_bio->retry_list, &conf->retry_list);
225 conf->nr_queued ++;
226 spin_unlock_irqrestore(&conf->device_lock, flags);
227
228 wake_up(&conf->wait_barrier);
229 md_wakeup_thread(mddev->thread);
230}
231
232/*
233 * raid_end_bio_io() is called when we have finished servicing a mirrored
234 * operation and are ready to return a success/failure code to the buffer
235 * cache layer.
236 */
237static void call_bio_endio(struct r1bio *r1_bio)
238{
239 struct bio *bio = r1_bio->master_bio;
240 int done;
241 struct r1conf *conf = r1_bio->mddev->private;
242 sector_t start_next_window = r1_bio->start_next_window;
243 sector_t bi_sector = bio->bi_iter.bi_sector;
244
245 if (bio->bi_phys_segments) {
246 unsigned long flags;
247 spin_lock_irqsave(&conf->device_lock, flags);
248 bio->bi_phys_segments--;
249 done = (bio->bi_phys_segments == 0);
250 spin_unlock_irqrestore(&conf->device_lock, flags);
251 /*
252 * make_request() might be waiting for
253 * bi_phys_segments to decrease
254 */
255 wake_up(&conf->wait_barrier);
256 } else
257 done = 1;
258
259 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
260 bio->bi_error = -EIO;
261
262 if (done) {
263 bio_endio(bio);
264 /*
265 * Wake up any possible resync thread that waits for the device
266 * to go idle.
267 */
268 allow_barrier(conf, start_next_window, bi_sector);
269 }
270}
271
272static void raid_end_bio_io(struct r1bio *r1_bio)
273{
274 struct bio *bio = r1_bio->master_bio;
275
276 /* if nobody has done the final endio yet, do it now */
277 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
278 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 (bio_data_dir(bio) == WRITE) ? "write" : "read",
280 (unsigned long long) bio->bi_iter.bi_sector,
281 (unsigned long long) bio_end_sector(bio) - 1);
282
283 call_bio_endio(r1_bio);
284 }
285 free_r1bio(r1_bio);
286}
287
288/*
289 * Update disk head position estimator based on IRQ completion info.
290 */
291static inline void update_head_pos(int disk, struct r1bio *r1_bio)
292{
293 struct r1conf *conf = r1_bio->mddev->private;
294
295 conf->mirrors[disk].head_position =
296 r1_bio->sector + (r1_bio->sectors);
297}
298
299/*
300 * Find the disk number which triggered given bio
301 */
302static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
303{
304 int mirror;
305 struct r1conf *conf = r1_bio->mddev->private;
306 int raid_disks = conf->raid_disks;
307
308 for (mirror = 0; mirror < raid_disks * 2; mirror++)
309 if (r1_bio->bios[mirror] == bio)
310 break;
311
312 BUG_ON(mirror == raid_disks * 2);
313 update_head_pos(mirror, r1_bio);
314
315 return mirror;
316}
317
318static void raid1_end_read_request(struct bio *bio)
319{
320 int uptodate = !bio->bi_error;
321 struct r1bio *r1_bio = bio->bi_private;
322 int mirror;
323 struct r1conf *conf = r1_bio->mddev->private;
324
325 mirror = r1_bio->read_disk;
326 /*
327 * this branch is our 'one mirror IO has finished' event handler:
328 */
329 update_head_pos(mirror, r1_bio);
330
331 if (uptodate)
332 set_bit(R1BIO_Uptodate, &r1_bio->state);
333 else {
334 /* If all other devices have failed, we want to return
335 * the error upwards rather than fail the last device.
336 * Here we redefine "uptodate" to mean "Don't want to retry"
337 */
338 unsigned long flags;
339 spin_lock_irqsave(&conf->device_lock, flags);
340 if (r1_bio->mddev->degraded == conf->raid_disks ||
341 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
342 test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
343 uptodate = 1;
344 spin_unlock_irqrestore(&conf->device_lock, flags);
345 }
346
347 if (uptodate) {
348 raid_end_bio_io(r1_bio);
349 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
350 } else {
351 /*
352 * oops, read error:
353 */
354 char b[BDEVNAME_SIZE];
355 printk_ratelimited(
356 KERN_ERR "md/raid1:%s: %s: "
357 "rescheduling sector %llu\n",
358 mdname(conf->mddev),
359 bdevname(conf->mirrors[mirror].rdev->bdev,
360 b),
361 (unsigned long long)r1_bio->sector);
362 set_bit(R1BIO_ReadError, &r1_bio->state);
363 reschedule_retry(r1_bio);
364 /* don't drop the reference on read_disk yet */
365 }
366}
367
368static void close_write(struct r1bio *r1_bio)
369{
370 /* it really is the end of this request */
371 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
372 /* free extra copy of the data pages */
373 int i = r1_bio->behind_page_count;
374 while (i--)
375 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
376 kfree(r1_bio->behind_bvecs);
377 r1_bio->behind_bvecs = NULL;
378 }
379 /* clear the bitmap if all writes complete successfully */
380 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
381 r1_bio->sectors,
382 !test_bit(R1BIO_Degraded, &r1_bio->state),
383 test_bit(R1BIO_BehindIO, &r1_bio->state));
384 md_write_end(r1_bio->mddev);
385}
386
387static void r1_bio_write_done(struct r1bio *r1_bio)
388{
389 if (!atomic_dec_and_test(&r1_bio->remaining))
390 return;
391
392 if (test_bit(R1BIO_WriteError, &r1_bio->state))
393 reschedule_retry(r1_bio);
394 else {
395 close_write(r1_bio);
396 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
397 reschedule_retry(r1_bio);
398 else
399 raid_end_bio_io(r1_bio);
400 }
401}
402
403static void raid1_end_write_request(struct bio *bio)
404{
405 struct r1bio *r1_bio = bio->bi_private;
406 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
407 struct r1conf *conf = r1_bio->mddev->private;
408 struct bio *to_put = NULL;
409
410 mirror = find_bio_disk(r1_bio, bio);
411
412 /*
413 * 'one mirror IO has finished' event handler:
414 */
415 if (bio->bi_error) {
416 set_bit(WriteErrorSeen,
417 &conf->mirrors[mirror].rdev->flags);
418 if (!test_and_set_bit(WantReplacement,
419 &conf->mirrors[mirror].rdev->flags))
420 set_bit(MD_RECOVERY_NEEDED, &
421 conf->mddev->recovery);
422
423 set_bit(R1BIO_WriteError, &r1_bio->state);
424 } else {
425 /*
426 * Set R1BIO_Uptodate in our master bio, so that we
427 * will return a good error code for to the higher
428 * levels even if IO on some other mirrored buffer
429 * fails.
430 *
431 * The 'master' represents the composite IO operation
432 * to user-side. So if something waits for IO, then it
433 * will wait for the 'master' bio.
434 */
435 sector_t first_bad;
436 int bad_sectors;
437
438 r1_bio->bios[mirror] = NULL;
439 to_put = bio;
440 /*
441 * Do not set R1BIO_Uptodate if the current device is
442 * rebuilding or Faulty. This is because we cannot use
443 * such device for properly reading the data back (we could
444 * potentially use it, if the current write would have felt
445 * before rdev->recovery_offset, but for simplicity we don't
446 * check this here.
447 */
448 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
449 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
450 set_bit(R1BIO_Uptodate, &r1_bio->state);
451
452 /* Maybe we can clear some bad blocks. */
453 if (is_badblock(conf->mirrors[mirror].rdev,
454 r1_bio->sector, r1_bio->sectors,
455 &first_bad, &bad_sectors)) {
456 r1_bio->bios[mirror] = IO_MADE_GOOD;
457 set_bit(R1BIO_MadeGood, &r1_bio->state);
458 }
459 }
460
461 if (behind) {
462 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
463 atomic_dec(&r1_bio->behind_remaining);
464
465 /*
466 * In behind mode, we ACK the master bio once the I/O
467 * has safely reached all non-writemostly
468 * disks. Setting the Returned bit ensures that this
469 * gets done only once -- we don't ever want to return
470 * -EIO here, instead we'll wait
471 */
472 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
473 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
474 /* Maybe we can return now */
475 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
476 struct bio *mbio = r1_bio->master_bio;
477 pr_debug("raid1: behind end write sectors"
478 " %llu-%llu\n",
479 (unsigned long long) mbio->bi_iter.bi_sector,
480 (unsigned long long) bio_end_sector(mbio) - 1);
481 call_bio_endio(r1_bio);
482 }
483 }
484 }
485 if (r1_bio->bios[mirror] == NULL)
486 rdev_dec_pending(conf->mirrors[mirror].rdev,
487 conf->mddev);
488
489 /*
490 * Let's see if all mirrored write operations have finished
491 * already.
492 */
493 r1_bio_write_done(r1_bio);
494
495 if (to_put)
496 bio_put(to_put);
497}
498
499/*
500 * This routine returns the disk from which the requested read should
501 * be done. There is a per-array 'next expected sequential IO' sector
502 * number - if this matches on the next IO then we use the last disk.
503 * There is also a per-disk 'last know head position' sector that is
504 * maintained from IRQ contexts, both the normal and the resync IO
505 * completion handlers update this position correctly. If there is no
506 * perfect sequential match then we pick the disk whose head is closest.
507 *
508 * If there are 2 mirrors in the same 2 devices, performance degrades
509 * because position is mirror, not device based.
510 *
511 * The rdev for the device selected will have nr_pending incremented.
512 */
513static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
514{
515 const sector_t this_sector = r1_bio->sector;
516 int sectors;
517 int best_good_sectors;
518 int best_disk, best_dist_disk, best_pending_disk;
519 int has_nonrot_disk;
520 int disk;
521 sector_t best_dist;
522 unsigned int min_pending;
523 struct md_rdev *rdev;
524 int choose_first;
525 int choose_next_idle;
526
527 rcu_read_lock();
528 /*
529 * Check if we can balance. We can balance on the whole
530 * device if no resync is going on, or below the resync window.
531 * We take the first readable disk when above the resync window.
532 */
533 retry:
534 sectors = r1_bio->sectors;
535 best_disk = -1;
536 best_dist_disk = -1;
537 best_dist = MaxSector;
538 best_pending_disk = -1;
539 min_pending = UINT_MAX;
540 best_good_sectors = 0;
541 has_nonrot_disk = 0;
542 choose_next_idle = 0;
543
544 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
545 (mddev_is_clustered(conf->mddev) &&
546 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
547 this_sector + sectors)))
548 choose_first = 1;
549 else
550 choose_first = 0;
551
552 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
553 sector_t dist;
554 sector_t first_bad;
555 int bad_sectors;
556 unsigned int pending;
557 bool nonrot;
558
559 rdev = rcu_dereference(conf->mirrors[disk].rdev);
560 if (r1_bio->bios[disk] == IO_BLOCKED
561 || rdev == NULL
562 || test_bit(Faulty, &rdev->flags))
563 continue;
564 if (!test_bit(In_sync, &rdev->flags) &&
565 rdev->recovery_offset < this_sector + sectors)
566 continue;
567 if (test_bit(WriteMostly, &rdev->flags)) {
568 /* Don't balance among write-mostly, just
569 * use the first as a last resort */
570 if (best_dist_disk < 0) {
571 if (is_badblock(rdev, this_sector, sectors,
572 &first_bad, &bad_sectors)) {
573 if (first_bad <= this_sector)
574 /* Cannot use this */
575 continue;
576 best_good_sectors = first_bad - this_sector;
577 } else
578 best_good_sectors = sectors;
579 best_dist_disk = disk;
580 best_pending_disk = disk;
581 }
582 continue;
583 }
584 /* This is a reasonable device to use. It might
585 * even be best.
586 */
587 if (is_badblock(rdev, this_sector, sectors,
588 &first_bad, &bad_sectors)) {
589 if (best_dist < MaxSector)
590 /* already have a better device */
591 continue;
592 if (first_bad <= this_sector) {
593 /* cannot read here. If this is the 'primary'
594 * device, then we must not read beyond
595 * bad_sectors from another device..
596 */
597 bad_sectors -= (this_sector - first_bad);
598 if (choose_first && sectors > bad_sectors)
599 sectors = bad_sectors;
600 if (best_good_sectors > sectors)
601 best_good_sectors = sectors;
602
603 } else {
604 sector_t good_sectors = first_bad - this_sector;
605 if (good_sectors > best_good_sectors) {
606 best_good_sectors = good_sectors;
607 best_disk = disk;
608 }
609 if (choose_first)
610 break;
611 }
612 continue;
613 } else
614 best_good_sectors = sectors;
615
616 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
617 has_nonrot_disk |= nonrot;
618 pending = atomic_read(&rdev->nr_pending);
619 dist = abs(this_sector - conf->mirrors[disk].head_position);
620 if (choose_first) {
621 best_disk = disk;
622 break;
623 }
624 /* Don't change to another disk for sequential reads */
625 if (conf->mirrors[disk].next_seq_sect == this_sector
626 || dist == 0) {
627 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
628 struct raid1_info *mirror = &conf->mirrors[disk];
629
630 best_disk = disk;
631 /*
632 * If buffered sequential IO size exceeds optimal
633 * iosize, check if there is idle disk. If yes, choose
634 * the idle disk. read_balance could already choose an
635 * idle disk before noticing it's a sequential IO in
636 * this disk. This doesn't matter because this disk
637 * will idle, next time it will be utilized after the
638 * first disk has IO size exceeds optimal iosize. In
639 * this way, iosize of the first disk will be optimal
640 * iosize at least. iosize of the second disk might be
641 * small, but not a big deal since when the second disk
642 * starts IO, the first disk is likely still busy.
643 */
644 if (nonrot && opt_iosize > 0 &&
645 mirror->seq_start != MaxSector &&
646 mirror->next_seq_sect > opt_iosize &&
647 mirror->next_seq_sect - opt_iosize >=
648 mirror->seq_start) {
649 choose_next_idle = 1;
650 continue;
651 }
652 break;
653 }
654 /* If device is idle, use it */
655 if (pending == 0) {
656 best_disk = disk;
657 break;
658 }
659
660 if (choose_next_idle)
661 continue;
662
663 if (min_pending > pending) {
664 min_pending = pending;
665 best_pending_disk = disk;
666 }
667
668 if (dist < best_dist) {
669 best_dist = dist;
670 best_dist_disk = disk;
671 }
672 }
673
674 /*
675 * If all disks are rotational, choose the closest disk. If any disk is
676 * non-rotational, choose the disk with less pending request even the
677 * disk is rotational, which might/might not be optimal for raids with
678 * mixed ratation/non-rotational disks depending on workload.
679 */
680 if (best_disk == -1) {
681 if (has_nonrot_disk)
682 best_disk = best_pending_disk;
683 else
684 best_disk = best_dist_disk;
685 }
686
687 if (best_disk >= 0) {
688 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
689 if (!rdev)
690 goto retry;
691 atomic_inc(&rdev->nr_pending);
692 if (test_bit(Faulty, &rdev->flags)) {
693 /* cannot risk returning a device that failed
694 * before we inc'ed nr_pending
695 */
696 rdev_dec_pending(rdev, conf->mddev);
697 goto retry;
698 }
699 sectors = best_good_sectors;
700
701 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
702 conf->mirrors[best_disk].seq_start = this_sector;
703
704 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
705 }
706 rcu_read_unlock();
707 *max_sectors = sectors;
708
709 return best_disk;
710}
711
712static int raid1_congested(struct mddev *mddev, int bits)
713{
714 struct r1conf *conf = mddev->private;
715 int i, ret = 0;
716
717 if ((bits & (1 << WB_async_congested)) &&
718 conf->pending_count >= max_queued_requests)
719 return 1;
720
721 rcu_read_lock();
722 for (i = 0; i < conf->raid_disks * 2; i++) {
723 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
724 if (rdev && !test_bit(Faulty, &rdev->flags)) {
725 struct request_queue *q = bdev_get_queue(rdev->bdev);
726
727 BUG_ON(!q);
728
729 /* Note the '|| 1' - when read_balance prefers
730 * non-congested targets, it can be removed
731 */
732 if ((bits & (1 << WB_async_congested)) || 1)
733 ret |= bdi_congested(&q->backing_dev_info, bits);
734 else
735 ret &= bdi_congested(&q->backing_dev_info, bits);
736 }
737 }
738 rcu_read_unlock();
739 return ret;
740}
741
742static void flush_pending_writes(struct r1conf *conf)
743{
744 /* Any writes that have been queued but are awaiting
745 * bitmap updates get flushed here.
746 */
747 spin_lock_irq(&conf->device_lock);
748
749 if (conf->pending_bio_list.head) {
750 struct bio *bio;
751 bio = bio_list_get(&conf->pending_bio_list);
752 conf->pending_count = 0;
753 spin_unlock_irq(&conf->device_lock);
754 /* flush any pending bitmap writes to
755 * disk before proceeding w/ I/O */
756 bitmap_unplug(conf->mddev->bitmap);
757 wake_up(&conf->wait_barrier);
758
759 while (bio) { /* submit pending writes */
760 struct bio *next = bio->bi_next;
761 bio->bi_next = NULL;
762 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
763 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
764 /* Just ignore it */
765 bio_endio(bio);
766 else
767 generic_make_request(bio);
768 bio = next;
769 }
770 } else
771 spin_unlock_irq(&conf->device_lock);
772}
773
774/* Barriers....
775 * Sometimes we need to suspend IO while we do something else,
776 * either some resync/recovery, or reconfigure the array.
777 * To do this we raise a 'barrier'.
778 * The 'barrier' is a counter that can be raised multiple times
779 * to count how many activities are happening which preclude
780 * normal IO.
781 * We can only raise the barrier if there is no pending IO.
782 * i.e. if nr_pending == 0.
783 * We choose only to raise the barrier if no-one is waiting for the
784 * barrier to go down. This means that as soon as an IO request
785 * is ready, no other operations which require a barrier will start
786 * until the IO request has had a chance.
787 *
788 * So: regular IO calls 'wait_barrier'. When that returns there
789 * is no backgroup IO happening, It must arrange to call
790 * allow_barrier when it has finished its IO.
791 * backgroup IO calls must call raise_barrier. Once that returns
792 * there is no normal IO happeing. It must arrange to call
793 * lower_barrier when the particular background IO completes.
794 */
795static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
796{
797 spin_lock_irq(&conf->resync_lock);
798
799 /* Wait until no block IO is waiting */
800 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
801 conf->resync_lock);
802
803 /* block any new IO from starting */
804 conf->barrier++;
805 conf->next_resync = sector_nr;
806
807 /* For these conditions we must wait:
808 * A: while the array is in frozen state
809 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
810 * the max count which allowed.
811 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
812 * next resync will reach to the window which normal bios are
813 * handling.
814 * D: while there are any active requests in the current window.
815 */
816 wait_event_lock_irq(conf->wait_barrier,
817 !conf->array_frozen &&
818 conf->barrier < RESYNC_DEPTH &&
819 conf->current_window_requests == 0 &&
820 (conf->start_next_window >=
821 conf->next_resync + RESYNC_SECTORS),
822 conf->resync_lock);
823
824 conf->nr_pending++;
825 spin_unlock_irq(&conf->resync_lock);
826}
827
828static void lower_barrier(struct r1conf *conf)
829{
830 unsigned long flags;
831 BUG_ON(conf->barrier <= 0);
832 spin_lock_irqsave(&conf->resync_lock, flags);
833 conf->barrier--;
834 conf->nr_pending--;
835 spin_unlock_irqrestore(&conf->resync_lock, flags);
836 wake_up(&conf->wait_barrier);
837}
838
839static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
840{
841 bool wait = false;
842
843 if (conf->array_frozen || !bio)
844 wait = true;
845 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
846 if ((conf->mddev->curr_resync_completed
847 >= bio_end_sector(bio)) ||
848 (conf->next_resync + NEXT_NORMALIO_DISTANCE
849 <= bio->bi_iter.bi_sector))
850 wait = false;
851 else
852 wait = true;
853 }
854
855 return wait;
856}
857
858static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
859{
860 sector_t sector = 0;
861
862 spin_lock_irq(&conf->resync_lock);
863 if (need_to_wait_for_sync(conf, bio)) {
864 conf->nr_waiting++;
865 /* Wait for the barrier to drop.
866 * However if there are already pending
867 * requests (preventing the barrier from
868 * rising completely), and the
869 * per-process bio queue isn't empty,
870 * then don't wait, as we need to empty
871 * that queue to allow conf->start_next_window
872 * to increase.
873 */
874 wait_event_lock_irq(conf->wait_barrier,
875 !conf->array_frozen &&
876 (!conf->barrier ||
877 ((conf->start_next_window <
878 conf->next_resync + RESYNC_SECTORS) &&
879 current->bio_list &&
880 (!bio_list_empty(&current->bio_list[0]) ||
881 !bio_list_empty(&current->bio_list[1])))),
882 conf->resync_lock);
883 conf->nr_waiting--;
884 }
885
886 if (bio && bio_data_dir(bio) == WRITE) {
887 if (bio->bi_iter.bi_sector >= conf->next_resync) {
888 if (conf->start_next_window == MaxSector)
889 conf->start_next_window =
890 conf->next_resync +
891 NEXT_NORMALIO_DISTANCE;
892
893 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
894 <= bio->bi_iter.bi_sector)
895 conf->next_window_requests++;
896 else
897 conf->current_window_requests++;
898 sector = conf->start_next_window;
899 }
900 }
901
902 conf->nr_pending++;
903 spin_unlock_irq(&conf->resync_lock);
904 return sector;
905}
906
907static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
908 sector_t bi_sector)
909{
910 unsigned long flags;
911
912 spin_lock_irqsave(&conf->resync_lock, flags);
913 conf->nr_pending--;
914 if (start_next_window) {
915 if (start_next_window == conf->start_next_window) {
916 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
917 <= bi_sector)
918 conf->next_window_requests--;
919 else
920 conf->current_window_requests--;
921 } else
922 conf->current_window_requests--;
923
924 if (!conf->current_window_requests) {
925 if (conf->next_window_requests) {
926 conf->current_window_requests =
927 conf->next_window_requests;
928 conf->next_window_requests = 0;
929 conf->start_next_window +=
930 NEXT_NORMALIO_DISTANCE;
931 } else
932 conf->start_next_window = MaxSector;
933 }
934 }
935 spin_unlock_irqrestore(&conf->resync_lock, flags);
936 wake_up(&conf->wait_barrier);
937}
938
939static void freeze_array(struct r1conf *conf, int extra)
940{
941 /* stop syncio and normal IO and wait for everything to
942 * go quite.
943 * We wait until nr_pending match nr_queued+extra
944 * This is called in the context of one normal IO request
945 * that has failed. Thus any sync request that might be pending
946 * will be blocked by nr_pending, and we need to wait for
947 * pending IO requests to complete or be queued for re-try.
948 * Thus the number queued (nr_queued) plus this request (extra)
949 * must match the number of pending IOs (nr_pending) before
950 * we continue.
951 */
952 spin_lock_irq(&conf->resync_lock);
953 conf->array_frozen = 1;
954 wait_event_lock_irq_cmd(conf->wait_barrier,
955 conf->nr_pending == conf->nr_queued+extra,
956 conf->resync_lock,
957 flush_pending_writes(conf));
958 spin_unlock_irq(&conf->resync_lock);
959}
960static void unfreeze_array(struct r1conf *conf)
961{
962 /* reverse the effect of the freeze */
963 spin_lock_irq(&conf->resync_lock);
964 conf->array_frozen = 0;
965 wake_up(&conf->wait_barrier);
966 spin_unlock_irq(&conf->resync_lock);
967}
968
969/* duplicate the data pages for behind I/O
970 */
971static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
972{
973 int i;
974 struct bio_vec *bvec;
975 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
976 GFP_NOIO);
977 if (unlikely(!bvecs))
978 return;
979
980 bio_for_each_segment_all(bvec, bio, i) {
981 bvecs[i] = *bvec;
982 bvecs[i].bv_page = alloc_page(GFP_NOIO);
983 if (unlikely(!bvecs[i].bv_page))
984 goto do_sync_io;
985 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
986 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
987 kunmap(bvecs[i].bv_page);
988 kunmap(bvec->bv_page);
989 }
990 r1_bio->behind_bvecs = bvecs;
991 r1_bio->behind_page_count = bio->bi_vcnt;
992 set_bit(R1BIO_BehindIO, &r1_bio->state);
993 return;
994
995do_sync_io:
996 for (i = 0; i < bio->bi_vcnt; i++)
997 if (bvecs[i].bv_page)
998 put_page(bvecs[i].bv_page);
999 kfree(bvecs);
1000 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1001 bio->bi_iter.bi_size);
1002}
1003
1004struct raid1_plug_cb {
1005 struct blk_plug_cb cb;
1006 struct bio_list pending;
1007 int pending_cnt;
1008};
1009
1010static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1011{
1012 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1013 cb);
1014 struct mddev *mddev = plug->cb.data;
1015 struct r1conf *conf = mddev->private;
1016 struct bio *bio;
1017
1018 if (from_schedule || current->bio_list) {
1019 spin_lock_irq(&conf->device_lock);
1020 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1021 conf->pending_count += plug->pending_cnt;
1022 spin_unlock_irq(&conf->device_lock);
1023 wake_up(&conf->wait_barrier);
1024 md_wakeup_thread(mddev->thread);
1025 kfree(plug);
1026 return;
1027 }
1028
1029 /* we aren't scheduling, so we can do the write-out directly. */
1030 bio = bio_list_get(&plug->pending);
1031 bitmap_unplug(mddev->bitmap);
1032 wake_up(&conf->wait_barrier);
1033
1034 while (bio) { /* submit pending writes */
1035 struct bio *next = bio->bi_next;
1036 bio->bi_next = NULL;
1037 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1038 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1039 /* Just ignore it */
1040 bio_endio(bio);
1041 else
1042 generic_make_request(bio);
1043 bio = next;
1044 }
1045 kfree(plug);
1046}
1047
1048static void make_request(struct mddev *mddev, struct bio * bio)
1049{
1050 struct r1conf *conf = mddev->private;
1051 struct raid1_info *mirror;
1052 struct r1bio *r1_bio;
1053 struct bio *read_bio;
1054 int i, disks;
1055 struct bitmap *bitmap;
1056 unsigned long flags;
1057 const int rw = bio_data_dir(bio);
1058 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1059 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1060 const unsigned long do_discard = (bio->bi_rw
1061 & (REQ_DISCARD | REQ_SECURE));
1062 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1063 struct md_rdev *blocked_rdev;
1064 struct blk_plug_cb *cb;
1065 struct raid1_plug_cb *plug = NULL;
1066 int first_clone;
1067 int sectors_handled;
1068 int max_sectors;
1069 sector_t start_next_window;
1070
1071 /*
1072 * Register the new request and wait if the reconstruction
1073 * thread has put up a bar for new requests.
1074 * Continue immediately if no resync is active currently.
1075 */
1076
1077 md_write_start(mddev, bio); /* wait on superblock update early */
1078
1079 if (bio_data_dir(bio) == WRITE &&
1080 ((bio_end_sector(bio) > mddev->suspend_lo &&
1081 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1082 (mddev_is_clustered(mddev) &&
1083 md_cluster_ops->area_resyncing(mddev, WRITE,
1084 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1085 /* As the suspend_* range is controlled by
1086 * userspace, we want an interruptible
1087 * wait.
1088 */
1089 DEFINE_WAIT(w);
1090 for (;;) {
1091 sigset_t full, old;
1092 prepare_to_wait(&conf->wait_barrier,
1093 &w, TASK_INTERRUPTIBLE);
1094 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1095 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1096 (mddev_is_clustered(mddev) &&
1097 !md_cluster_ops->area_resyncing(mddev, WRITE,
1098 bio->bi_iter.bi_sector, bio_end_sector(bio))))
1099 break;
1100 sigfillset(&full);
1101 sigprocmask(SIG_BLOCK, &full, &old);
1102 schedule();
1103 sigprocmask(SIG_SETMASK, &old, NULL);
1104 }
1105 finish_wait(&conf->wait_barrier, &w);
1106 }
1107
1108 start_next_window = wait_barrier(conf, bio);
1109
1110 bitmap = mddev->bitmap;
1111
1112 /*
1113 * make_request() can abort the operation when READA is being
1114 * used and no empty request is available.
1115 *
1116 */
1117 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1118
1119 r1_bio->master_bio = bio;
1120 r1_bio->sectors = bio_sectors(bio);
1121 r1_bio->state = 0;
1122 r1_bio->mddev = mddev;
1123 r1_bio->sector = bio->bi_iter.bi_sector;
1124
1125 /* We might need to issue multiple reads to different
1126 * devices if there are bad blocks around, so we keep
1127 * track of the number of reads in bio->bi_phys_segments.
1128 * If this is 0, there is only one r1_bio and no locking
1129 * will be needed when requests complete. If it is
1130 * non-zero, then it is the number of not-completed requests.
1131 */
1132 bio->bi_phys_segments = 0;
1133 bio_clear_flag(bio, BIO_SEG_VALID);
1134
1135 if (rw == READ) {
1136 /*
1137 * read balancing logic:
1138 */
1139 int rdisk;
1140
1141read_again:
1142 rdisk = read_balance(conf, r1_bio, &max_sectors);
1143
1144 if (rdisk < 0) {
1145 /* couldn't find anywhere to read from */
1146 raid_end_bio_io(r1_bio);
1147 return;
1148 }
1149 mirror = conf->mirrors + rdisk;
1150
1151 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1152 bitmap) {
1153 /* Reading from a write-mostly device must
1154 * take care not to over-take any writes
1155 * that are 'behind'
1156 */
1157 wait_event(bitmap->behind_wait,
1158 atomic_read(&bitmap->behind_writes) == 0);
1159 }
1160 r1_bio->read_disk = rdisk;
1161 r1_bio->start_next_window = 0;
1162
1163 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1164 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1165 max_sectors);
1166
1167 r1_bio->bios[rdisk] = read_bio;
1168
1169 read_bio->bi_iter.bi_sector = r1_bio->sector +
1170 mirror->rdev->data_offset;
1171 read_bio->bi_bdev = mirror->rdev->bdev;
1172 read_bio->bi_end_io = raid1_end_read_request;
1173 read_bio->bi_rw = READ | do_sync;
1174 read_bio->bi_private = r1_bio;
1175
1176 if (max_sectors < r1_bio->sectors) {
1177 /* could not read all from this device, so we will
1178 * need another r1_bio.
1179 */
1180
1181 sectors_handled = (r1_bio->sector + max_sectors
1182 - bio->bi_iter.bi_sector);
1183 r1_bio->sectors = max_sectors;
1184 spin_lock_irq(&conf->device_lock);
1185 if (bio->bi_phys_segments == 0)
1186 bio->bi_phys_segments = 2;
1187 else
1188 bio->bi_phys_segments++;
1189 spin_unlock_irq(&conf->device_lock);
1190 /* Cannot call generic_make_request directly
1191 * as that will be queued in __make_request
1192 * and subsequent mempool_alloc might block waiting
1193 * for it. So hand bio over to raid1d.
1194 */
1195 reschedule_retry(r1_bio);
1196
1197 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1198
1199 r1_bio->master_bio = bio;
1200 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1201 r1_bio->state = 0;
1202 r1_bio->mddev = mddev;
1203 r1_bio->sector = bio->bi_iter.bi_sector +
1204 sectors_handled;
1205 goto read_again;
1206 } else
1207 generic_make_request(read_bio);
1208 return;
1209 }
1210
1211 /*
1212 * WRITE:
1213 */
1214 if (conf->pending_count >= max_queued_requests) {
1215 md_wakeup_thread(mddev->thread);
1216 wait_event(conf->wait_barrier,
1217 conf->pending_count < max_queued_requests);
1218 }
1219 /* first select target devices under rcu_lock and
1220 * inc refcount on their rdev. Record them by setting
1221 * bios[x] to bio
1222 * If there are known/acknowledged bad blocks on any device on
1223 * which we have seen a write error, we want to avoid writing those
1224 * blocks.
1225 * This potentially requires several writes to write around
1226 * the bad blocks. Each set of writes gets it's own r1bio
1227 * with a set of bios attached.
1228 */
1229
1230 disks = conf->raid_disks * 2;
1231 retry_write:
1232 r1_bio->start_next_window = start_next_window;
1233 blocked_rdev = NULL;
1234 rcu_read_lock();
1235 max_sectors = r1_bio->sectors;
1236 for (i = 0; i < disks; i++) {
1237 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1238 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1239 atomic_inc(&rdev->nr_pending);
1240 blocked_rdev = rdev;
1241 break;
1242 }
1243 r1_bio->bios[i] = NULL;
1244 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1245 if (i < conf->raid_disks)
1246 set_bit(R1BIO_Degraded, &r1_bio->state);
1247 continue;
1248 }
1249
1250 atomic_inc(&rdev->nr_pending);
1251 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1252 sector_t first_bad;
1253 int bad_sectors;
1254 int is_bad;
1255
1256 is_bad = is_badblock(rdev, r1_bio->sector,
1257 max_sectors,
1258 &first_bad, &bad_sectors);
1259 if (is_bad < 0) {
1260 /* mustn't write here until the bad block is
1261 * acknowledged*/
1262 set_bit(BlockedBadBlocks, &rdev->flags);
1263 blocked_rdev = rdev;
1264 break;
1265 }
1266 if (is_bad && first_bad <= r1_bio->sector) {
1267 /* Cannot write here at all */
1268 bad_sectors -= (r1_bio->sector - first_bad);
1269 if (bad_sectors < max_sectors)
1270 /* mustn't write more than bad_sectors
1271 * to other devices yet
1272 */
1273 max_sectors = bad_sectors;
1274 rdev_dec_pending(rdev, mddev);
1275 /* We don't set R1BIO_Degraded as that
1276 * only applies if the disk is
1277 * missing, so it might be re-added,
1278 * and we want to know to recover this
1279 * chunk.
1280 * In this case the device is here,
1281 * and the fact that this chunk is not
1282 * in-sync is recorded in the bad
1283 * block log
1284 */
1285 continue;
1286 }
1287 if (is_bad) {
1288 int good_sectors = first_bad - r1_bio->sector;
1289 if (good_sectors < max_sectors)
1290 max_sectors = good_sectors;
1291 }
1292 }
1293 r1_bio->bios[i] = bio;
1294 }
1295 rcu_read_unlock();
1296
1297 if (unlikely(blocked_rdev)) {
1298 /* Wait for this device to become unblocked */
1299 int j;
1300 sector_t old = start_next_window;
1301
1302 for (j = 0; j < i; j++)
1303 if (r1_bio->bios[j])
1304 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1305 r1_bio->state = 0;
1306 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1307 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1308 start_next_window = wait_barrier(conf, bio);
1309 /*
1310 * We must make sure the multi r1bios of bio have
1311 * the same value of bi_phys_segments
1312 */
1313 if (bio->bi_phys_segments && old &&
1314 old != start_next_window)
1315 /* Wait for the former r1bio(s) to complete */
1316 wait_event(conf->wait_barrier,
1317 bio->bi_phys_segments == 1);
1318 goto retry_write;
1319 }
1320
1321 if (max_sectors < r1_bio->sectors) {
1322 /* We are splitting this write into multiple parts, so
1323 * we need to prepare for allocating another r1_bio.
1324 */
1325 r1_bio->sectors = max_sectors;
1326 spin_lock_irq(&conf->device_lock);
1327 if (bio->bi_phys_segments == 0)
1328 bio->bi_phys_segments = 2;
1329 else
1330 bio->bi_phys_segments++;
1331 spin_unlock_irq(&conf->device_lock);
1332 }
1333 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1334
1335 atomic_set(&r1_bio->remaining, 1);
1336 atomic_set(&r1_bio->behind_remaining, 0);
1337
1338 first_clone = 1;
1339 for (i = 0; i < disks; i++) {
1340 struct bio *mbio;
1341 if (!r1_bio->bios[i])
1342 continue;
1343
1344 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1345 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1346
1347 if (first_clone) {
1348 /* do behind I/O ?
1349 * Not if there are too many, or cannot
1350 * allocate memory, or a reader on WriteMostly
1351 * is waiting for behind writes to flush */
1352 if (bitmap &&
1353 (atomic_read(&bitmap->behind_writes)
1354 < mddev->bitmap_info.max_write_behind) &&
1355 !waitqueue_active(&bitmap->behind_wait))
1356 alloc_behind_pages(mbio, r1_bio);
1357
1358 bitmap_startwrite(bitmap, r1_bio->sector,
1359 r1_bio->sectors,
1360 test_bit(R1BIO_BehindIO,
1361 &r1_bio->state));
1362 first_clone = 0;
1363 }
1364 if (r1_bio->behind_bvecs) {
1365 struct bio_vec *bvec;
1366 int j;
1367
1368 /*
1369 * We trimmed the bio, so _all is legit
1370 */
1371 bio_for_each_segment_all(bvec, mbio, j)
1372 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1373 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1374 atomic_inc(&r1_bio->behind_remaining);
1375 }
1376
1377 r1_bio->bios[i] = mbio;
1378
1379 mbio->bi_iter.bi_sector = (r1_bio->sector +
1380 conf->mirrors[i].rdev->data_offset);
1381 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1382 mbio->bi_end_io = raid1_end_write_request;
1383 mbio->bi_rw =
1384 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1385 mbio->bi_private = r1_bio;
1386
1387 atomic_inc(&r1_bio->remaining);
1388
1389 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1390 if (cb)
1391 plug = container_of(cb, struct raid1_plug_cb, cb);
1392 else
1393 plug = NULL;
1394 spin_lock_irqsave(&conf->device_lock, flags);
1395 if (plug) {
1396 bio_list_add(&plug->pending, mbio);
1397 plug->pending_cnt++;
1398 } else {
1399 bio_list_add(&conf->pending_bio_list, mbio);
1400 conf->pending_count++;
1401 }
1402 spin_unlock_irqrestore(&conf->device_lock, flags);
1403 if (!plug)
1404 md_wakeup_thread(mddev->thread);
1405 }
1406 /* Mustn't call r1_bio_write_done before this next test,
1407 * as it could result in the bio being freed.
1408 */
1409 if (sectors_handled < bio_sectors(bio)) {
1410 r1_bio_write_done(r1_bio);
1411 /* We need another r1_bio. It has already been counted
1412 * in bio->bi_phys_segments
1413 */
1414 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1415 r1_bio->master_bio = bio;
1416 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1417 r1_bio->state = 0;
1418 r1_bio->mddev = mddev;
1419 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1420 goto retry_write;
1421 }
1422
1423 r1_bio_write_done(r1_bio);
1424
1425 /* In case raid1d snuck in to freeze_array */
1426 wake_up(&conf->wait_barrier);
1427}
1428
1429static void status(struct seq_file *seq, struct mddev *mddev)
1430{
1431 struct r1conf *conf = mddev->private;
1432 int i;
1433
1434 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1435 conf->raid_disks - mddev->degraded);
1436 rcu_read_lock();
1437 for (i = 0; i < conf->raid_disks; i++) {
1438 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1439 seq_printf(seq, "%s",
1440 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1441 }
1442 rcu_read_unlock();
1443 seq_printf(seq, "]");
1444}
1445
1446static void error(struct mddev *mddev, struct md_rdev *rdev)
1447{
1448 char b[BDEVNAME_SIZE];
1449 struct r1conf *conf = mddev->private;
1450 unsigned long flags;
1451
1452 /*
1453 * If it is not operational, then we have already marked it as dead
1454 * else if it is the last working disks, ignore the error, let the
1455 * next level up know.
1456 * else mark the drive as failed
1457 */
1458 if (test_bit(In_sync, &rdev->flags)
1459 && (conf->raid_disks - mddev->degraded) == 1) {
1460 /*
1461 * Don't fail the drive, act as though we were just a
1462 * normal single drive.
1463 * However don't try a recovery from this drive as
1464 * it is very likely to fail.
1465 */
1466 conf->recovery_disabled = mddev->recovery_disabled;
1467 return;
1468 }
1469 set_bit(Blocked, &rdev->flags);
1470 spin_lock_irqsave(&conf->device_lock, flags);
1471 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1472 mddev->degraded++;
1473 set_bit(Faulty, &rdev->flags);
1474 } else
1475 set_bit(Faulty, &rdev->flags);
1476 spin_unlock_irqrestore(&conf->device_lock, flags);
1477 /*
1478 * if recovery is running, make sure it aborts.
1479 */
1480 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1481 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1482 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1483 printk(KERN_ALERT
1484 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1485 "md/raid1:%s: Operation continuing on %d devices.\n",
1486 mdname(mddev), bdevname(rdev->bdev, b),
1487 mdname(mddev), conf->raid_disks - mddev->degraded);
1488}
1489
1490static void print_conf(struct r1conf *conf)
1491{
1492 int i;
1493
1494 printk(KERN_DEBUG "RAID1 conf printout:\n");
1495 if (!conf) {
1496 printk(KERN_DEBUG "(!conf)\n");
1497 return;
1498 }
1499 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1500 conf->raid_disks);
1501
1502 rcu_read_lock();
1503 for (i = 0; i < conf->raid_disks; i++) {
1504 char b[BDEVNAME_SIZE];
1505 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1506 if (rdev)
1507 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1508 i, !test_bit(In_sync, &rdev->flags),
1509 !test_bit(Faulty, &rdev->flags),
1510 bdevname(rdev->bdev,b));
1511 }
1512 rcu_read_unlock();
1513}
1514
1515static void close_sync(struct r1conf *conf)
1516{
1517 wait_barrier(conf, NULL);
1518 allow_barrier(conf, 0, 0);
1519
1520 mempool_destroy(conf->r1buf_pool);
1521 conf->r1buf_pool = NULL;
1522
1523 spin_lock_irq(&conf->resync_lock);
1524 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1525 conf->start_next_window = MaxSector;
1526 conf->current_window_requests +=
1527 conf->next_window_requests;
1528 conf->next_window_requests = 0;
1529 spin_unlock_irq(&conf->resync_lock);
1530}
1531
1532static int raid1_spare_active(struct mddev *mddev)
1533{
1534 int i;
1535 struct r1conf *conf = mddev->private;
1536 int count = 0;
1537 unsigned long flags;
1538
1539 /*
1540 * Find all failed disks within the RAID1 configuration
1541 * and mark them readable.
1542 * Called under mddev lock, so rcu protection not needed.
1543 * device_lock used to avoid races with raid1_end_read_request
1544 * which expects 'In_sync' flags and ->degraded to be consistent.
1545 */
1546 spin_lock_irqsave(&conf->device_lock, flags);
1547 for (i = 0; i < conf->raid_disks; i++) {
1548 struct md_rdev *rdev = conf->mirrors[i].rdev;
1549 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1550 if (repl
1551 && !test_bit(Candidate, &repl->flags)
1552 && repl->recovery_offset == MaxSector
1553 && !test_bit(Faulty, &repl->flags)
1554 && !test_and_set_bit(In_sync, &repl->flags)) {
1555 /* replacement has just become active */
1556 if (!rdev ||
1557 !test_and_clear_bit(In_sync, &rdev->flags))
1558 count++;
1559 if (rdev) {
1560 /* Replaced device not technically
1561 * faulty, but we need to be sure
1562 * it gets removed and never re-added
1563 */
1564 set_bit(Faulty, &rdev->flags);
1565 sysfs_notify_dirent_safe(
1566 rdev->sysfs_state);
1567 }
1568 }
1569 if (rdev
1570 && rdev->recovery_offset == MaxSector
1571 && !test_bit(Faulty, &rdev->flags)
1572 && !test_and_set_bit(In_sync, &rdev->flags)) {
1573 count++;
1574 sysfs_notify_dirent_safe(rdev->sysfs_state);
1575 }
1576 }
1577 mddev->degraded -= count;
1578 spin_unlock_irqrestore(&conf->device_lock, flags);
1579
1580 print_conf(conf);
1581 return count;
1582}
1583
1584static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1585{
1586 struct r1conf *conf = mddev->private;
1587 int err = -EEXIST;
1588 int mirror = 0;
1589 struct raid1_info *p;
1590 int first = 0;
1591 int last = conf->raid_disks - 1;
1592
1593 if (mddev->recovery_disabled == conf->recovery_disabled)
1594 return -EBUSY;
1595
1596 if (md_integrity_add_rdev(rdev, mddev))
1597 return -ENXIO;
1598
1599 if (rdev->raid_disk >= 0)
1600 first = last = rdev->raid_disk;
1601
1602 /*
1603 * find the disk ... but prefer rdev->saved_raid_disk
1604 * if possible.
1605 */
1606 if (rdev->saved_raid_disk >= 0 &&
1607 rdev->saved_raid_disk >= first &&
1608 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1609 first = last = rdev->saved_raid_disk;
1610
1611 for (mirror = first; mirror <= last; mirror++) {
1612 p = conf->mirrors+mirror;
1613 if (!p->rdev) {
1614
1615 if (mddev->gendisk)
1616 disk_stack_limits(mddev->gendisk, rdev->bdev,
1617 rdev->data_offset << 9);
1618
1619 p->head_position = 0;
1620 rdev->raid_disk = mirror;
1621 err = 0;
1622 /* As all devices are equivalent, we don't need a full recovery
1623 * if this was recently any drive of the array
1624 */
1625 if (rdev->saved_raid_disk < 0)
1626 conf->fullsync = 1;
1627 rcu_assign_pointer(p->rdev, rdev);
1628 break;
1629 }
1630 if (test_bit(WantReplacement, &p->rdev->flags) &&
1631 p[conf->raid_disks].rdev == NULL) {
1632 /* Add this device as a replacement */
1633 clear_bit(In_sync, &rdev->flags);
1634 set_bit(Replacement, &rdev->flags);
1635 rdev->raid_disk = mirror;
1636 err = 0;
1637 conf->fullsync = 1;
1638 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1639 break;
1640 }
1641 }
1642 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1643 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1644 print_conf(conf);
1645 return err;
1646}
1647
1648static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1649{
1650 struct r1conf *conf = mddev->private;
1651 int err = 0;
1652 int number = rdev->raid_disk;
1653 struct raid1_info *p = conf->mirrors + number;
1654
1655 if (rdev != p->rdev)
1656 p = conf->mirrors + conf->raid_disks + number;
1657
1658 print_conf(conf);
1659 if (rdev == p->rdev) {
1660 if (test_bit(In_sync, &rdev->flags) ||
1661 atomic_read(&rdev->nr_pending)) {
1662 err = -EBUSY;
1663 goto abort;
1664 }
1665 /* Only remove non-faulty devices if recovery
1666 * is not possible.
1667 */
1668 if (!test_bit(Faulty, &rdev->flags) &&
1669 mddev->recovery_disabled != conf->recovery_disabled &&
1670 mddev->degraded < conf->raid_disks) {
1671 err = -EBUSY;
1672 goto abort;
1673 }
1674 p->rdev = NULL;
1675 synchronize_rcu();
1676 if (atomic_read(&rdev->nr_pending)) {
1677 /* lost the race, try later */
1678 err = -EBUSY;
1679 p->rdev = rdev;
1680 goto abort;
1681 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1682 /* We just removed a device that is being replaced.
1683 * Move down the replacement. We drain all IO before
1684 * doing this to avoid confusion.
1685 */
1686 struct md_rdev *repl =
1687 conf->mirrors[conf->raid_disks + number].rdev;
1688 freeze_array(conf, 0);
1689 clear_bit(Replacement, &repl->flags);
1690 p->rdev = repl;
1691 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1692 unfreeze_array(conf);
1693 clear_bit(WantReplacement, &rdev->flags);
1694 } else
1695 clear_bit(WantReplacement, &rdev->flags);
1696 err = md_integrity_register(mddev);
1697 }
1698abort:
1699
1700 print_conf(conf);
1701 return err;
1702}
1703
1704static void end_sync_read(struct bio *bio)
1705{
1706 struct r1bio *r1_bio = bio->bi_private;
1707
1708 update_head_pos(r1_bio->read_disk, r1_bio);
1709
1710 /*
1711 * we have read a block, now it needs to be re-written,
1712 * or re-read if the read failed.
1713 * We don't do much here, just schedule handling by raid1d
1714 */
1715 if (!bio->bi_error)
1716 set_bit(R1BIO_Uptodate, &r1_bio->state);
1717
1718 if (atomic_dec_and_test(&r1_bio->remaining))
1719 reschedule_retry(r1_bio);
1720}
1721
1722static void end_sync_write(struct bio *bio)
1723{
1724 int uptodate = !bio->bi_error;
1725 struct r1bio *r1_bio = bio->bi_private;
1726 struct mddev *mddev = r1_bio->mddev;
1727 struct r1conf *conf = mddev->private;
1728 int mirror=0;
1729 sector_t first_bad;
1730 int bad_sectors;
1731
1732 mirror = find_bio_disk(r1_bio, bio);
1733
1734 if (!uptodate) {
1735 sector_t sync_blocks = 0;
1736 sector_t s = r1_bio->sector;
1737 long sectors_to_go = r1_bio->sectors;
1738 /* make sure these bits doesn't get cleared. */
1739 do {
1740 bitmap_end_sync(mddev->bitmap, s,
1741 &sync_blocks, 1);
1742 s += sync_blocks;
1743 sectors_to_go -= sync_blocks;
1744 } while (sectors_to_go > 0);
1745 set_bit(WriteErrorSeen,
1746 &conf->mirrors[mirror].rdev->flags);
1747 if (!test_and_set_bit(WantReplacement,
1748 &conf->mirrors[mirror].rdev->flags))
1749 set_bit(MD_RECOVERY_NEEDED, &
1750 mddev->recovery);
1751 set_bit(R1BIO_WriteError, &r1_bio->state);
1752 } else if (is_badblock(conf->mirrors[mirror].rdev,
1753 r1_bio->sector,
1754 r1_bio->sectors,
1755 &first_bad, &bad_sectors) &&
1756 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1757 r1_bio->sector,
1758 r1_bio->sectors,
1759 &first_bad, &bad_sectors)
1760 )
1761 set_bit(R1BIO_MadeGood, &r1_bio->state);
1762
1763 if (atomic_dec_and_test(&r1_bio->remaining)) {
1764 int s = r1_bio->sectors;
1765 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1766 test_bit(R1BIO_WriteError, &r1_bio->state))
1767 reschedule_retry(r1_bio);
1768 else {
1769 put_buf(r1_bio);
1770 md_done_sync(mddev, s, uptodate);
1771 }
1772 }
1773}
1774
1775static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1776 int sectors, struct page *page, int rw)
1777{
1778 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1779 /* success */
1780 return 1;
1781 if (rw == WRITE) {
1782 set_bit(WriteErrorSeen, &rdev->flags);
1783 if (!test_and_set_bit(WantReplacement,
1784 &rdev->flags))
1785 set_bit(MD_RECOVERY_NEEDED, &
1786 rdev->mddev->recovery);
1787 }
1788 /* need to record an error - either for the block or the device */
1789 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1790 md_error(rdev->mddev, rdev);
1791 return 0;
1792}
1793
1794static int fix_sync_read_error(struct r1bio *r1_bio)
1795{
1796 /* Try some synchronous reads of other devices to get
1797 * good data, much like with normal read errors. Only
1798 * read into the pages we already have so we don't
1799 * need to re-issue the read request.
1800 * We don't need to freeze the array, because being in an
1801 * active sync request, there is no normal IO, and
1802 * no overlapping syncs.
1803 * We don't need to check is_badblock() again as we
1804 * made sure that anything with a bad block in range
1805 * will have bi_end_io clear.
1806 */
1807 struct mddev *mddev = r1_bio->mddev;
1808 struct r1conf *conf = mddev->private;
1809 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1810 sector_t sect = r1_bio->sector;
1811 int sectors = r1_bio->sectors;
1812 int idx = 0;
1813
1814 while(sectors) {
1815 int s = sectors;
1816 int d = r1_bio->read_disk;
1817 int success = 0;
1818 struct md_rdev *rdev;
1819 int start;
1820
1821 if (s > (PAGE_SIZE>>9))
1822 s = PAGE_SIZE >> 9;
1823 do {
1824 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1825 /* No rcu protection needed here devices
1826 * can only be removed when no resync is
1827 * active, and resync is currently active
1828 */
1829 rdev = conf->mirrors[d].rdev;
1830 if (sync_page_io(rdev, sect, s<<9,
1831 bio->bi_io_vec[idx].bv_page,
1832 READ, false)) {
1833 success = 1;
1834 break;
1835 }
1836 }
1837 d++;
1838 if (d == conf->raid_disks * 2)
1839 d = 0;
1840 } while (!success && d != r1_bio->read_disk);
1841
1842 if (!success) {
1843 char b[BDEVNAME_SIZE];
1844 int abort = 0;
1845 /* Cannot read from anywhere, this block is lost.
1846 * Record a bad block on each device. If that doesn't
1847 * work just disable and interrupt the recovery.
1848 * Don't fail devices as that won't really help.
1849 */
1850 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1851 " for block %llu\n",
1852 mdname(mddev),
1853 bdevname(bio->bi_bdev, b),
1854 (unsigned long long)r1_bio->sector);
1855 for (d = 0; d < conf->raid_disks * 2; d++) {
1856 rdev = conf->mirrors[d].rdev;
1857 if (!rdev || test_bit(Faulty, &rdev->flags))
1858 continue;
1859 if (!rdev_set_badblocks(rdev, sect, s, 0))
1860 abort = 1;
1861 }
1862 if (abort) {
1863 conf->recovery_disabled =
1864 mddev->recovery_disabled;
1865 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1866 md_done_sync(mddev, r1_bio->sectors, 0);
1867 put_buf(r1_bio);
1868 return 0;
1869 }
1870 /* Try next page */
1871 sectors -= s;
1872 sect += s;
1873 idx++;
1874 continue;
1875 }
1876
1877 start = d;
1878 /* write it back and re-read */
1879 while (d != r1_bio->read_disk) {
1880 if (d == 0)
1881 d = conf->raid_disks * 2;
1882 d--;
1883 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1884 continue;
1885 rdev = conf->mirrors[d].rdev;
1886 if (r1_sync_page_io(rdev, sect, s,
1887 bio->bi_io_vec[idx].bv_page,
1888 WRITE) == 0) {
1889 r1_bio->bios[d]->bi_end_io = NULL;
1890 rdev_dec_pending(rdev, mddev);
1891 }
1892 }
1893 d = start;
1894 while (d != r1_bio->read_disk) {
1895 if (d == 0)
1896 d = conf->raid_disks * 2;
1897 d--;
1898 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1899 continue;
1900 rdev = conf->mirrors[d].rdev;
1901 if (r1_sync_page_io(rdev, sect, s,
1902 bio->bi_io_vec[idx].bv_page,
1903 READ) != 0)
1904 atomic_add(s, &rdev->corrected_errors);
1905 }
1906 sectors -= s;
1907 sect += s;
1908 idx ++;
1909 }
1910 set_bit(R1BIO_Uptodate, &r1_bio->state);
1911 bio->bi_error = 0;
1912 return 1;
1913}
1914
1915static void process_checks(struct r1bio *r1_bio)
1916{
1917 /* We have read all readable devices. If we haven't
1918 * got the block, then there is no hope left.
1919 * If we have, then we want to do a comparison
1920 * and skip the write if everything is the same.
1921 * If any blocks failed to read, then we need to
1922 * attempt an over-write
1923 */
1924 struct mddev *mddev = r1_bio->mddev;
1925 struct r1conf *conf = mddev->private;
1926 int primary;
1927 int i;
1928 int vcnt;
1929
1930 /* Fix variable parts of all bios */
1931 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1932 for (i = 0; i < conf->raid_disks * 2; i++) {
1933 int j;
1934 int size;
1935 int error;
1936 struct bio *b = r1_bio->bios[i];
1937 if (b->bi_end_io != end_sync_read)
1938 continue;
1939 /* fixup the bio for reuse, but preserve errno */
1940 error = b->bi_error;
1941 bio_reset(b);
1942 b->bi_error = error;
1943 b->bi_vcnt = vcnt;
1944 b->bi_iter.bi_size = r1_bio->sectors << 9;
1945 b->bi_iter.bi_sector = r1_bio->sector +
1946 conf->mirrors[i].rdev->data_offset;
1947 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1948 b->bi_end_io = end_sync_read;
1949 b->bi_private = r1_bio;
1950
1951 size = b->bi_iter.bi_size;
1952 for (j = 0; j < vcnt ; j++) {
1953 struct bio_vec *bi;
1954 bi = &b->bi_io_vec[j];
1955 bi->bv_offset = 0;
1956 if (size > PAGE_SIZE)
1957 bi->bv_len = PAGE_SIZE;
1958 else
1959 bi->bv_len = size;
1960 size -= PAGE_SIZE;
1961 }
1962 }
1963 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1964 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1965 !r1_bio->bios[primary]->bi_error) {
1966 r1_bio->bios[primary]->bi_end_io = NULL;
1967 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1968 break;
1969 }
1970 r1_bio->read_disk = primary;
1971 for (i = 0; i < conf->raid_disks * 2; i++) {
1972 int j;
1973 struct bio *pbio = r1_bio->bios[primary];
1974 struct bio *sbio = r1_bio->bios[i];
1975 int error = sbio->bi_error;
1976
1977 if (sbio->bi_end_io != end_sync_read)
1978 continue;
1979 /* Now we can 'fixup' the error value */
1980 sbio->bi_error = 0;
1981
1982 if (!error) {
1983 for (j = vcnt; j-- ; ) {
1984 struct page *p, *s;
1985 p = pbio->bi_io_vec[j].bv_page;
1986 s = sbio->bi_io_vec[j].bv_page;
1987 if (memcmp(page_address(p),
1988 page_address(s),
1989 sbio->bi_io_vec[j].bv_len))
1990 break;
1991 }
1992 } else
1993 j = 0;
1994 if (j >= 0)
1995 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1996 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1997 && !error)) {
1998 /* No need to write to this device. */
1999 sbio->bi_end_io = NULL;
2000 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2001 continue;
2002 }
2003
2004 bio_copy_data(sbio, pbio);
2005 }
2006}
2007
2008static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2009{
2010 struct r1conf *conf = mddev->private;
2011 int i;
2012 int disks = conf->raid_disks * 2;
2013 struct bio *bio, *wbio;
2014
2015 bio = r1_bio->bios[r1_bio->read_disk];
2016
2017 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2018 /* ouch - failed to read all of that. */
2019 if (!fix_sync_read_error(r1_bio))
2020 return;
2021
2022 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2023 process_checks(r1_bio);
2024
2025 /*
2026 * schedule writes
2027 */
2028 atomic_set(&r1_bio->remaining, 1);
2029 for (i = 0; i < disks ; i++) {
2030 wbio = r1_bio->bios[i];
2031 if (wbio->bi_end_io == NULL ||
2032 (wbio->bi_end_io == end_sync_read &&
2033 (i == r1_bio->read_disk ||
2034 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2035 continue;
2036
2037 wbio->bi_rw = WRITE;
2038 wbio->bi_end_io = end_sync_write;
2039 atomic_inc(&r1_bio->remaining);
2040 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2041
2042 generic_make_request(wbio);
2043 }
2044
2045 if (atomic_dec_and_test(&r1_bio->remaining)) {
2046 /* if we're here, all write(s) have completed, so clean up */
2047 int s = r1_bio->sectors;
2048 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2049 test_bit(R1BIO_WriteError, &r1_bio->state))
2050 reschedule_retry(r1_bio);
2051 else {
2052 put_buf(r1_bio);
2053 md_done_sync(mddev, s, 1);
2054 }
2055 }
2056}
2057
2058/*
2059 * This is a kernel thread which:
2060 *
2061 * 1. Retries failed read operations on working mirrors.
2062 * 2. Updates the raid superblock when problems encounter.
2063 * 3. Performs writes following reads for array synchronising.
2064 */
2065
2066static void fix_read_error(struct r1conf *conf, int read_disk,
2067 sector_t sect, int sectors)
2068{
2069 struct mddev *mddev = conf->mddev;
2070 while(sectors) {
2071 int s = sectors;
2072 int d = read_disk;
2073 int success = 0;
2074 int start;
2075 struct md_rdev *rdev;
2076
2077 if (s > (PAGE_SIZE>>9))
2078 s = PAGE_SIZE >> 9;
2079
2080 do {
2081 /* Note: no rcu protection needed here
2082 * as this is synchronous in the raid1d thread
2083 * which is the thread that might remove
2084 * a device. If raid1d ever becomes multi-threaded....
2085 */
2086 sector_t first_bad;
2087 int bad_sectors;
2088
2089 rdev = conf->mirrors[d].rdev;
2090 if (rdev &&
2091 (test_bit(In_sync, &rdev->flags) ||
2092 (!test_bit(Faulty, &rdev->flags) &&
2093 rdev->recovery_offset >= sect + s)) &&
2094 is_badblock(rdev, sect, s,
2095 &first_bad, &bad_sectors) == 0 &&
2096 sync_page_io(rdev, sect, s<<9,
2097 conf->tmppage, READ, false))
2098 success = 1;
2099 else {
2100 d++;
2101 if (d == conf->raid_disks * 2)
2102 d = 0;
2103 }
2104 } while (!success && d != read_disk);
2105
2106 if (!success) {
2107 /* Cannot read from anywhere - mark it bad */
2108 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2109 if (!rdev_set_badblocks(rdev, sect, s, 0))
2110 md_error(mddev, rdev);
2111 break;
2112 }
2113 /* write it back and re-read */
2114 start = d;
2115 while (d != read_disk) {
2116 if (d==0)
2117 d = conf->raid_disks * 2;
2118 d--;
2119 rdev = conf->mirrors[d].rdev;
2120 if (rdev &&
2121 !test_bit(Faulty, &rdev->flags))
2122 r1_sync_page_io(rdev, sect, s,
2123 conf->tmppage, WRITE);
2124 }
2125 d = start;
2126 while (d != read_disk) {
2127 char b[BDEVNAME_SIZE];
2128 if (d==0)
2129 d = conf->raid_disks * 2;
2130 d--;
2131 rdev = conf->mirrors[d].rdev;
2132 if (rdev &&
2133 !test_bit(Faulty, &rdev->flags)) {
2134 if (r1_sync_page_io(rdev, sect, s,
2135 conf->tmppage, READ)) {
2136 atomic_add(s, &rdev->corrected_errors);
2137 printk(KERN_INFO
2138 "md/raid1:%s: read error corrected "
2139 "(%d sectors at %llu on %s)\n",
2140 mdname(mddev), s,
2141 (unsigned long long)(sect +
2142 rdev->data_offset),
2143 bdevname(rdev->bdev, b));
2144 }
2145 }
2146 }
2147 sectors -= s;
2148 sect += s;
2149 }
2150}
2151
2152static int narrow_write_error(struct r1bio *r1_bio, int i)
2153{
2154 struct mddev *mddev = r1_bio->mddev;
2155 struct r1conf *conf = mddev->private;
2156 struct md_rdev *rdev = conf->mirrors[i].rdev;
2157
2158 /* bio has the data to be written to device 'i' where
2159 * we just recently had a write error.
2160 * We repeatedly clone the bio and trim down to one block,
2161 * then try the write. Where the write fails we record
2162 * a bad block.
2163 * It is conceivable that the bio doesn't exactly align with
2164 * blocks. We must handle this somehow.
2165 *
2166 * We currently own a reference on the rdev.
2167 */
2168
2169 int block_sectors;
2170 sector_t sector;
2171 int sectors;
2172 int sect_to_write = r1_bio->sectors;
2173 int ok = 1;
2174
2175 if (rdev->badblocks.shift < 0)
2176 return 0;
2177
2178 block_sectors = roundup(1 << rdev->badblocks.shift,
2179 bdev_logical_block_size(rdev->bdev) >> 9);
2180 sector = r1_bio->sector;
2181 sectors = ((sector + block_sectors)
2182 & ~(sector_t)(block_sectors - 1))
2183 - sector;
2184
2185 while (sect_to_write) {
2186 struct bio *wbio;
2187 if (sectors > sect_to_write)
2188 sectors = sect_to_write;
2189 /* Write at 'sector' for 'sectors'*/
2190
2191 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2192 unsigned vcnt = r1_bio->behind_page_count;
2193 struct bio_vec *vec = r1_bio->behind_bvecs;
2194
2195 while (!vec->bv_page) {
2196 vec++;
2197 vcnt--;
2198 }
2199
2200 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2201 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2202
2203 wbio->bi_vcnt = vcnt;
2204 } else {
2205 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2206 }
2207
2208 wbio->bi_rw = WRITE;
2209 wbio->bi_iter.bi_sector = r1_bio->sector;
2210 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2211
2212 bio_trim(wbio, sector - r1_bio->sector, sectors);
2213 wbio->bi_iter.bi_sector += rdev->data_offset;
2214 wbio->bi_bdev = rdev->bdev;
2215 if (submit_bio_wait(WRITE, wbio) < 0)
2216 /* failure! */
2217 ok = rdev_set_badblocks(rdev, sector,
2218 sectors, 0)
2219 && ok;
2220
2221 bio_put(wbio);
2222 sect_to_write -= sectors;
2223 sector += sectors;
2224 sectors = block_sectors;
2225 }
2226 return ok;
2227}
2228
2229static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2230{
2231 int m;
2232 int s = r1_bio->sectors;
2233 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2234 struct md_rdev *rdev = conf->mirrors[m].rdev;
2235 struct bio *bio = r1_bio->bios[m];
2236 if (bio->bi_end_io == NULL)
2237 continue;
2238 if (!bio->bi_error &&
2239 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2240 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2241 }
2242 if (bio->bi_error &&
2243 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2244 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2245 md_error(conf->mddev, rdev);
2246 }
2247 }
2248 put_buf(r1_bio);
2249 md_done_sync(conf->mddev, s, 1);
2250}
2251
2252static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2253{
2254 int m;
2255 bool fail = false;
2256 for (m = 0; m < conf->raid_disks * 2 ; m++)
2257 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2258 struct md_rdev *rdev = conf->mirrors[m].rdev;
2259 rdev_clear_badblocks(rdev,
2260 r1_bio->sector,
2261 r1_bio->sectors, 0);
2262 rdev_dec_pending(rdev, conf->mddev);
2263 } else if (r1_bio->bios[m] != NULL) {
2264 /* This drive got a write error. We need to
2265 * narrow down and record precise write
2266 * errors.
2267 */
2268 fail = true;
2269 if (!narrow_write_error(r1_bio, m)) {
2270 md_error(conf->mddev,
2271 conf->mirrors[m].rdev);
2272 /* an I/O failed, we can't clear the bitmap */
2273 set_bit(R1BIO_Degraded, &r1_bio->state);
2274 }
2275 rdev_dec_pending(conf->mirrors[m].rdev,
2276 conf->mddev);
2277 }
2278 if (fail) {
2279 spin_lock_irq(&conf->device_lock);
2280 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2281 conf->nr_queued++;
2282 spin_unlock_irq(&conf->device_lock);
2283 md_wakeup_thread(conf->mddev->thread);
2284 } else {
2285 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2286 close_write(r1_bio);
2287 raid_end_bio_io(r1_bio);
2288 }
2289}
2290
2291static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2292{
2293 int disk;
2294 int max_sectors;
2295 struct mddev *mddev = conf->mddev;
2296 struct bio *bio;
2297 char b[BDEVNAME_SIZE];
2298 struct md_rdev *rdev;
2299
2300 clear_bit(R1BIO_ReadError, &r1_bio->state);
2301 /* we got a read error. Maybe the drive is bad. Maybe just
2302 * the block and we can fix it.
2303 * We freeze all other IO, and try reading the block from
2304 * other devices. When we find one, we re-write
2305 * and check it that fixes the read error.
2306 * This is all done synchronously while the array is
2307 * frozen
2308 */
2309 if (mddev->ro == 0) {
2310 freeze_array(conf, 1);
2311 fix_read_error(conf, r1_bio->read_disk,
2312 r1_bio->sector, r1_bio->sectors);
2313 unfreeze_array(conf);
2314 } else
2315 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2316 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2317
2318 bio = r1_bio->bios[r1_bio->read_disk];
2319 bdevname(bio->bi_bdev, b);
2320read_more:
2321 disk = read_balance(conf, r1_bio, &max_sectors);
2322 if (disk == -1) {
2323 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2324 " read error for block %llu\n",
2325 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2326 raid_end_bio_io(r1_bio);
2327 } else {
2328 const unsigned long do_sync
2329 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2330 if (bio) {
2331 r1_bio->bios[r1_bio->read_disk] =
2332 mddev->ro ? IO_BLOCKED : NULL;
2333 bio_put(bio);
2334 }
2335 r1_bio->read_disk = disk;
2336 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2337 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2338 max_sectors);
2339 r1_bio->bios[r1_bio->read_disk] = bio;
2340 rdev = conf->mirrors[disk].rdev;
2341 printk_ratelimited(KERN_ERR
2342 "md/raid1:%s: redirecting sector %llu"
2343 " to other mirror: %s\n",
2344 mdname(mddev),
2345 (unsigned long long)r1_bio->sector,
2346 bdevname(rdev->bdev, b));
2347 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2348 bio->bi_bdev = rdev->bdev;
2349 bio->bi_end_io = raid1_end_read_request;
2350 bio->bi_rw = READ | do_sync;
2351 bio->bi_private = r1_bio;
2352 if (max_sectors < r1_bio->sectors) {
2353 /* Drat - have to split this up more */
2354 struct bio *mbio = r1_bio->master_bio;
2355 int sectors_handled = (r1_bio->sector + max_sectors
2356 - mbio->bi_iter.bi_sector);
2357 r1_bio->sectors = max_sectors;
2358 spin_lock_irq(&conf->device_lock);
2359 if (mbio->bi_phys_segments == 0)
2360 mbio->bi_phys_segments = 2;
2361 else
2362 mbio->bi_phys_segments++;
2363 spin_unlock_irq(&conf->device_lock);
2364 generic_make_request(bio);
2365 bio = NULL;
2366
2367 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2368
2369 r1_bio->master_bio = mbio;
2370 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2371 r1_bio->state = 0;
2372 set_bit(R1BIO_ReadError, &r1_bio->state);
2373 r1_bio->mddev = mddev;
2374 r1_bio->sector = mbio->bi_iter.bi_sector +
2375 sectors_handled;
2376
2377 goto read_more;
2378 } else
2379 generic_make_request(bio);
2380 }
2381}
2382
2383static void raid1d(struct md_thread *thread)
2384{
2385 struct mddev *mddev = thread->mddev;
2386 struct r1bio *r1_bio;
2387 unsigned long flags;
2388 struct r1conf *conf = mddev->private;
2389 struct list_head *head = &conf->retry_list;
2390 struct blk_plug plug;
2391
2392 md_check_recovery(mddev);
2393
2394 if (!list_empty_careful(&conf->bio_end_io_list) &&
2395 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2396 LIST_HEAD(tmp);
2397 spin_lock_irqsave(&conf->device_lock, flags);
2398 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2399 while (!list_empty(&conf->bio_end_io_list)) {
2400 list_move(conf->bio_end_io_list.prev, &tmp);
2401 conf->nr_queued--;
2402 }
2403 }
2404 spin_unlock_irqrestore(&conf->device_lock, flags);
2405 while (!list_empty(&tmp)) {
2406 r1_bio = list_first_entry(&tmp, struct r1bio,
2407 retry_list);
2408 list_del(&r1_bio->retry_list);
2409 if (mddev->degraded)
2410 set_bit(R1BIO_Degraded, &r1_bio->state);
2411 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2412 close_write(r1_bio);
2413 raid_end_bio_io(r1_bio);
2414 }
2415 }
2416
2417 blk_start_plug(&plug);
2418 for (;;) {
2419
2420 flush_pending_writes(conf);
2421
2422 spin_lock_irqsave(&conf->device_lock, flags);
2423 if (list_empty(head)) {
2424 spin_unlock_irqrestore(&conf->device_lock, flags);
2425 break;
2426 }
2427 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2428 list_del(head->prev);
2429 conf->nr_queued--;
2430 spin_unlock_irqrestore(&conf->device_lock, flags);
2431
2432 mddev = r1_bio->mddev;
2433 conf = mddev->private;
2434 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2435 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2436 test_bit(R1BIO_WriteError, &r1_bio->state))
2437 handle_sync_write_finished(conf, r1_bio);
2438 else
2439 sync_request_write(mddev, r1_bio);
2440 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2441 test_bit(R1BIO_WriteError, &r1_bio->state))
2442 handle_write_finished(conf, r1_bio);
2443 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2444 handle_read_error(conf, r1_bio);
2445 else
2446 /* just a partial read to be scheduled from separate
2447 * context
2448 */
2449 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2450
2451 cond_resched();
2452 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2453 md_check_recovery(mddev);
2454 }
2455 blk_finish_plug(&plug);
2456}
2457
2458static int init_resync(struct r1conf *conf)
2459{
2460 int buffs;
2461
2462 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2463 BUG_ON(conf->r1buf_pool);
2464 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2465 conf->poolinfo);
2466 if (!conf->r1buf_pool)
2467 return -ENOMEM;
2468 conf->next_resync = 0;
2469 return 0;
2470}
2471
2472/*
2473 * perform a "sync" on one "block"
2474 *
2475 * We need to make sure that no normal I/O request - particularly write
2476 * requests - conflict with active sync requests.
2477 *
2478 * This is achieved by tracking pending requests and a 'barrier' concept
2479 * that can be installed to exclude normal IO requests.
2480 */
2481
2482static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
2483{
2484 struct r1conf *conf = mddev->private;
2485 struct r1bio *r1_bio;
2486 struct bio *bio;
2487 sector_t max_sector, nr_sectors;
2488 int disk = -1;
2489 int i;
2490 int wonly = -1;
2491 int write_targets = 0, read_targets = 0;
2492 sector_t sync_blocks;
2493 int still_degraded = 0;
2494 int good_sectors = RESYNC_SECTORS;
2495 int min_bad = 0; /* number of sectors that are bad in all devices */
2496
2497 if (!conf->r1buf_pool)
2498 if (init_resync(conf))
2499 return 0;
2500
2501 max_sector = mddev->dev_sectors;
2502 if (sector_nr >= max_sector) {
2503 /* If we aborted, we need to abort the
2504 * sync on the 'current' bitmap chunk (there will
2505 * only be one in raid1 resync.
2506 * We can find the current addess in mddev->curr_resync
2507 */
2508 if (mddev->curr_resync < max_sector) /* aborted */
2509 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2510 &sync_blocks, 1);
2511 else /* completed sync */
2512 conf->fullsync = 0;
2513
2514 bitmap_close_sync(mddev->bitmap);
2515 close_sync(conf);
2516
2517 if (mddev_is_clustered(mddev)) {
2518 conf->cluster_sync_low = 0;
2519 conf->cluster_sync_high = 0;
2520 }
2521 return 0;
2522 }
2523
2524 if (mddev->bitmap == NULL &&
2525 mddev->recovery_cp == MaxSector &&
2526 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2527 conf->fullsync == 0) {
2528 *skipped = 1;
2529 return max_sector - sector_nr;
2530 }
2531 /* before building a request, check if we can skip these blocks..
2532 * This call the bitmap_start_sync doesn't actually record anything
2533 */
2534 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2535 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2536 /* We can skip this block, and probably several more */
2537 *skipped = 1;
2538 return sync_blocks;
2539 }
2540
2541 /* we are incrementing sector_nr below. To be safe, we check against
2542 * sector_nr + two times RESYNC_SECTORS
2543 */
2544
2545 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2546 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2547 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2548
2549 raise_barrier(conf, sector_nr);
2550
2551 rcu_read_lock();
2552 /*
2553 * If we get a correctably read error during resync or recovery,
2554 * we might want to read from a different device. So we
2555 * flag all drives that could conceivably be read from for READ,
2556 * and any others (which will be non-In_sync devices) for WRITE.
2557 * If a read fails, we try reading from something else for which READ
2558 * is OK.
2559 */
2560
2561 r1_bio->mddev = mddev;
2562 r1_bio->sector = sector_nr;
2563 r1_bio->state = 0;
2564 set_bit(R1BIO_IsSync, &r1_bio->state);
2565
2566 for (i = 0; i < conf->raid_disks * 2; i++) {
2567 struct md_rdev *rdev;
2568 bio = r1_bio->bios[i];
2569 bio_reset(bio);
2570
2571 rdev = rcu_dereference(conf->mirrors[i].rdev);
2572 if (rdev == NULL ||
2573 test_bit(Faulty, &rdev->flags)) {
2574 if (i < conf->raid_disks)
2575 still_degraded = 1;
2576 } else if (!test_bit(In_sync, &rdev->flags)) {
2577 bio->bi_rw = WRITE;
2578 bio->bi_end_io = end_sync_write;
2579 write_targets ++;
2580 } else {
2581 /* may need to read from here */
2582 sector_t first_bad = MaxSector;
2583 int bad_sectors;
2584
2585 if (is_badblock(rdev, sector_nr, good_sectors,
2586 &first_bad, &bad_sectors)) {
2587 if (first_bad > sector_nr)
2588 good_sectors = first_bad - sector_nr;
2589 else {
2590 bad_sectors -= (sector_nr - first_bad);
2591 if (min_bad == 0 ||
2592 min_bad > bad_sectors)
2593 min_bad = bad_sectors;
2594 }
2595 }
2596 if (sector_nr < first_bad) {
2597 if (test_bit(WriteMostly, &rdev->flags)) {
2598 if (wonly < 0)
2599 wonly = i;
2600 } else {
2601 if (disk < 0)
2602 disk = i;
2603 }
2604 bio->bi_rw = READ;
2605 bio->bi_end_io = end_sync_read;
2606 read_targets++;
2607 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2608 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2609 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2610 /*
2611 * The device is suitable for reading (InSync),
2612 * but has bad block(s) here. Let's try to correct them,
2613 * if we are doing resync or repair. Otherwise, leave
2614 * this device alone for this sync request.
2615 */
2616 bio->bi_rw = WRITE;
2617 bio->bi_end_io = end_sync_write;
2618 write_targets++;
2619 }
2620 }
2621 if (bio->bi_end_io) {
2622 atomic_inc(&rdev->nr_pending);
2623 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2624 bio->bi_bdev = rdev->bdev;
2625 bio->bi_private = r1_bio;
2626 }
2627 }
2628 rcu_read_unlock();
2629 if (disk < 0)
2630 disk = wonly;
2631 r1_bio->read_disk = disk;
2632
2633 if (read_targets == 0 && min_bad > 0) {
2634 /* These sectors are bad on all InSync devices, so we
2635 * need to mark them bad on all write targets
2636 */
2637 int ok = 1;
2638 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2639 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2640 struct md_rdev *rdev = conf->mirrors[i].rdev;
2641 ok = rdev_set_badblocks(rdev, sector_nr,
2642 min_bad, 0
2643 ) && ok;
2644 }
2645 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2646 *skipped = 1;
2647 put_buf(r1_bio);
2648
2649 if (!ok) {
2650 /* Cannot record the badblocks, so need to
2651 * abort the resync.
2652 * If there are multiple read targets, could just
2653 * fail the really bad ones ???
2654 */
2655 conf->recovery_disabled = mddev->recovery_disabled;
2656 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2657 return 0;
2658 } else
2659 return min_bad;
2660
2661 }
2662 if (min_bad > 0 && min_bad < good_sectors) {
2663 /* only resync enough to reach the next bad->good
2664 * transition */
2665 good_sectors = min_bad;
2666 }
2667
2668 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2669 /* extra read targets are also write targets */
2670 write_targets += read_targets-1;
2671
2672 if (write_targets == 0 || read_targets == 0) {
2673 /* There is nowhere to write, so all non-sync
2674 * drives must be failed - so we are finished
2675 */
2676 sector_t rv;
2677 if (min_bad > 0)
2678 max_sector = sector_nr + min_bad;
2679 rv = max_sector - sector_nr;
2680 *skipped = 1;
2681 put_buf(r1_bio);
2682 return rv;
2683 }
2684
2685 if (max_sector > mddev->resync_max)
2686 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2687 if (max_sector > sector_nr + good_sectors)
2688 max_sector = sector_nr + good_sectors;
2689 nr_sectors = 0;
2690 sync_blocks = 0;
2691 do {
2692 struct page *page;
2693 int len = PAGE_SIZE;
2694 if (sector_nr + (len>>9) > max_sector)
2695 len = (max_sector - sector_nr) << 9;
2696 if (len == 0)
2697 break;
2698 if (sync_blocks == 0) {
2699 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2700 &sync_blocks, still_degraded) &&
2701 !conf->fullsync &&
2702 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2703 break;
2704 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2705 if ((len >> 9) > sync_blocks)
2706 len = sync_blocks<<9;
2707 }
2708
2709 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2710 bio = r1_bio->bios[i];
2711 if (bio->bi_end_io) {
2712 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2713 if (bio_add_page(bio, page, len, 0) == 0) {
2714 /* stop here */
2715 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2716 while (i > 0) {
2717 i--;
2718 bio = r1_bio->bios[i];
2719 if (bio->bi_end_io==NULL)
2720 continue;
2721 /* remove last page from this bio */
2722 bio->bi_vcnt--;
2723 bio->bi_iter.bi_size -= len;
2724 bio_clear_flag(bio, BIO_SEG_VALID);
2725 }
2726 goto bio_full;
2727 }
2728 }
2729 }
2730 nr_sectors += len>>9;
2731 sector_nr += len>>9;
2732 sync_blocks -= (len>>9);
2733 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2734 bio_full:
2735 r1_bio->sectors = nr_sectors;
2736
2737 if (mddev_is_clustered(mddev) &&
2738 conf->cluster_sync_high < sector_nr + nr_sectors) {
2739 conf->cluster_sync_low = mddev->curr_resync_completed;
2740 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2741 /* Send resync message */
2742 md_cluster_ops->resync_info_update(mddev,
2743 conf->cluster_sync_low,
2744 conf->cluster_sync_high);
2745 }
2746
2747 /* For a user-requested sync, we read all readable devices and do a
2748 * compare
2749 */
2750 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2751 atomic_set(&r1_bio->remaining, read_targets);
2752 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2753 bio = r1_bio->bios[i];
2754 if (bio->bi_end_io == end_sync_read) {
2755 read_targets--;
2756 md_sync_acct(bio->bi_bdev, nr_sectors);
2757 generic_make_request(bio);
2758 }
2759 }
2760 } else {
2761 atomic_set(&r1_bio->remaining, 1);
2762 bio = r1_bio->bios[r1_bio->read_disk];
2763 md_sync_acct(bio->bi_bdev, nr_sectors);
2764 generic_make_request(bio);
2765
2766 }
2767 return nr_sectors;
2768}
2769
2770static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2771{
2772 if (sectors)
2773 return sectors;
2774
2775 return mddev->dev_sectors;
2776}
2777
2778static struct r1conf *setup_conf(struct mddev *mddev)
2779{
2780 struct r1conf *conf;
2781 int i;
2782 struct raid1_info *disk;
2783 struct md_rdev *rdev;
2784 int err = -ENOMEM;
2785
2786 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2787 if (!conf)
2788 goto abort;
2789
2790 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2791 * mddev->raid_disks * 2,
2792 GFP_KERNEL);
2793 if (!conf->mirrors)
2794 goto abort;
2795
2796 conf->tmppage = alloc_page(GFP_KERNEL);
2797 if (!conf->tmppage)
2798 goto abort;
2799
2800 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2801 if (!conf->poolinfo)
2802 goto abort;
2803 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2804 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2805 r1bio_pool_free,
2806 conf->poolinfo);
2807 if (!conf->r1bio_pool)
2808 goto abort;
2809
2810 conf->poolinfo->mddev = mddev;
2811
2812 err = -EINVAL;
2813 spin_lock_init(&conf->device_lock);
2814 rdev_for_each(rdev, mddev) {
2815 struct request_queue *q;
2816 int disk_idx = rdev->raid_disk;
2817 if (disk_idx >= mddev->raid_disks
2818 || disk_idx < 0)
2819 continue;
2820 if (test_bit(Replacement, &rdev->flags))
2821 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2822 else
2823 disk = conf->mirrors + disk_idx;
2824
2825 if (disk->rdev)
2826 goto abort;
2827 disk->rdev = rdev;
2828 q = bdev_get_queue(rdev->bdev);
2829
2830 disk->head_position = 0;
2831 disk->seq_start = MaxSector;
2832 }
2833 conf->raid_disks = mddev->raid_disks;
2834 conf->mddev = mddev;
2835 INIT_LIST_HEAD(&conf->retry_list);
2836 INIT_LIST_HEAD(&conf->bio_end_io_list);
2837
2838 spin_lock_init(&conf->resync_lock);
2839 init_waitqueue_head(&conf->wait_barrier);
2840
2841 bio_list_init(&conf->pending_bio_list);
2842 conf->pending_count = 0;
2843 conf->recovery_disabled = mddev->recovery_disabled - 1;
2844
2845 conf->start_next_window = MaxSector;
2846 conf->current_window_requests = conf->next_window_requests = 0;
2847
2848 err = -EIO;
2849 for (i = 0; i < conf->raid_disks * 2; i++) {
2850
2851 disk = conf->mirrors + i;
2852
2853 if (i < conf->raid_disks &&
2854 disk[conf->raid_disks].rdev) {
2855 /* This slot has a replacement. */
2856 if (!disk->rdev) {
2857 /* No original, just make the replacement
2858 * a recovering spare
2859 */
2860 disk->rdev =
2861 disk[conf->raid_disks].rdev;
2862 disk[conf->raid_disks].rdev = NULL;
2863 } else if (!test_bit(In_sync, &disk->rdev->flags))
2864 /* Original is not in_sync - bad */
2865 goto abort;
2866 }
2867
2868 if (!disk->rdev ||
2869 !test_bit(In_sync, &disk->rdev->flags)) {
2870 disk->head_position = 0;
2871 if (disk->rdev &&
2872 (disk->rdev->saved_raid_disk < 0))
2873 conf->fullsync = 1;
2874 }
2875 }
2876
2877 err = -ENOMEM;
2878 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2879 if (!conf->thread) {
2880 printk(KERN_ERR
2881 "md/raid1:%s: couldn't allocate thread\n",
2882 mdname(mddev));
2883 goto abort;
2884 }
2885
2886 return conf;
2887
2888 abort:
2889 if (conf) {
2890 mempool_destroy(conf->r1bio_pool);
2891 kfree(conf->mirrors);
2892 safe_put_page(conf->tmppage);
2893 kfree(conf->poolinfo);
2894 kfree(conf);
2895 }
2896 return ERR_PTR(err);
2897}
2898
2899static void raid1_free(struct mddev *mddev, void *priv);
2900static int run(struct mddev *mddev)
2901{
2902 struct r1conf *conf;
2903 int i;
2904 struct md_rdev *rdev;
2905 int ret;
2906 bool discard_supported = false;
2907
2908 if (mddev->level != 1) {
2909 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2910 mdname(mddev), mddev->level);
2911 return -EIO;
2912 }
2913 if (mddev->reshape_position != MaxSector) {
2914 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2915 mdname(mddev));
2916 return -EIO;
2917 }
2918 /*
2919 * copy the already verified devices into our private RAID1
2920 * bookkeeping area. [whatever we allocate in run(),
2921 * should be freed in raid1_free()]
2922 */
2923 if (mddev->private == NULL)
2924 conf = setup_conf(mddev);
2925 else
2926 conf = mddev->private;
2927
2928 if (IS_ERR(conf))
2929 return PTR_ERR(conf);
2930
2931 if (mddev->queue)
2932 blk_queue_max_write_same_sectors(mddev->queue, 0);
2933
2934 rdev_for_each(rdev, mddev) {
2935 if (!mddev->gendisk)
2936 continue;
2937 disk_stack_limits(mddev->gendisk, rdev->bdev,
2938 rdev->data_offset << 9);
2939 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2940 discard_supported = true;
2941 }
2942
2943 mddev->degraded = 0;
2944 for (i=0; i < conf->raid_disks; i++)
2945 if (conf->mirrors[i].rdev == NULL ||
2946 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2947 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2948 mddev->degraded++;
2949
2950 if (conf->raid_disks - mddev->degraded == 1)
2951 mddev->recovery_cp = MaxSector;
2952
2953 if (mddev->recovery_cp != MaxSector)
2954 printk(KERN_NOTICE "md/raid1:%s: not clean"
2955 " -- starting background reconstruction\n",
2956 mdname(mddev));
2957 printk(KERN_INFO
2958 "md/raid1:%s: active with %d out of %d mirrors\n",
2959 mdname(mddev), mddev->raid_disks - mddev->degraded,
2960 mddev->raid_disks);
2961
2962 /*
2963 * Ok, everything is just fine now
2964 */
2965 mddev->thread = conf->thread;
2966 conf->thread = NULL;
2967 mddev->private = conf;
2968
2969 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2970
2971 if (mddev->queue) {
2972 if (discard_supported)
2973 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2974 mddev->queue);
2975 else
2976 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2977 mddev->queue);
2978 }
2979
2980 ret = md_integrity_register(mddev);
2981 if (ret) {
2982 md_unregister_thread(&mddev->thread);
2983 raid1_free(mddev, conf);
2984 }
2985 return ret;
2986}
2987
2988static void raid1_free(struct mddev *mddev, void *priv)
2989{
2990 struct r1conf *conf = priv;
2991
2992 mempool_destroy(conf->r1bio_pool);
2993 kfree(conf->mirrors);
2994 safe_put_page(conf->tmppage);
2995 kfree(conf->poolinfo);
2996 kfree(conf);
2997}
2998
2999static int raid1_resize(struct mddev *mddev, sector_t sectors)
3000{
3001 /* no resync is happening, and there is enough space
3002 * on all devices, so we can resize.
3003 * We need to make sure resync covers any new space.
3004 * If the array is shrinking we should possibly wait until
3005 * any io in the removed space completes, but it hardly seems
3006 * worth it.
3007 */
3008 sector_t newsize = raid1_size(mddev, sectors, 0);
3009 if (mddev->external_size &&
3010 mddev->array_sectors > newsize)
3011 return -EINVAL;
3012 if (mddev->bitmap) {
3013 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3014 if (ret)
3015 return ret;
3016 }
3017 md_set_array_sectors(mddev, newsize);
3018 set_capacity(mddev->gendisk, mddev->array_sectors);
3019 revalidate_disk(mddev->gendisk);
3020 if (sectors > mddev->dev_sectors &&
3021 mddev->recovery_cp > mddev->dev_sectors) {
3022 mddev->recovery_cp = mddev->dev_sectors;
3023 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3024 }
3025 mddev->dev_sectors = sectors;
3026 mddev->resync_max_sectors = sectors;
3027 return 0;
3028}
3029
3030static int raid1_reshape(struct mddev *mddev)
3031{
3032 /* We need to:
3033 * 1/ resize the r1bio_pool
3034 * 2/ resize conf->mirrors
3035 *
3036 * We allocate a new r1bio_pool if we can.
3037 * Then raise a device barrier and wait until all IO stops.
3038 * Then resize conf->mirrors and swap in the new r1bio pool.
3039 *
3040 * At the same time, we "pack" the devices so that all the missing
3041 * devices have the higher raid_disk numbers.
3042 */
3043 mempool_t *newpool, *oldpool;
3044 struct pool_info *newpoolinfo;
3045 struct raid1_info *newmirrors;
3046 struct r1conf *conf = mddev->private;
3047 int cnt, raid_disks;
3048 unsigned long flags;
3049 int d, d2, err;
3050
3051 /* Cannot change chunk_size, layout, or level */
3052 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3053 mddev->layout != mddev->new_layout ||
3054 mddev->level != mddev->new_level) {
3055 mddev->new_chunk_sectors = mddev->chunk_sectors;
3056 mddev->new_layout = mddev->layout;
3057 mddev->new_level = mddev->level;
3058 return -EINVAL;
3059 }
3060
3061 if (!mddev_is_clustered(mddev)) {
3062 err = md_allow_write(mddev);
3063 if (err)
3064 return err;
3065 }
3066
3067 raid_disks = mddev->raid_disks + mddev->delta_disks;
3068
3069 if (raid_disks < conf->raid_disks) {
3070 cnt=0;
3071 for (d= 0; d < conf->raid_disks; d++)
3072 if (conf->mirrors[d].rdev)
3073 cnt++;
3074 if (cnt > raid_disks)
3075 return -EBUSY;
3076 }
3077
3078 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3079 if (!newpoolinfo)
3080 return -ENOMEM;
3081 newpoolinfo->mddev = mddev;
3082 newpoolinfo->raid_disks = raid_disks * 2;
3083
3084 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3085 r1bio_pool_free, newpoolinfo);
3086 if (!newpool) {
3087 kfree(newpoolinfo);
3088 return -ENOMEM;
3089 }
3090 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3091 GFP_KERNEL);
3092 if (!newmirrors) {
3093 kfree(newpoolinfo);
3094 mempool_destroy(newpool);
3095 return -ENOMEM;
3096 }
3097
3098 freeze_array(conf, 0);
3099
3100 /* ok, everything is stopped */
3101 oldpool = conf->r1bio_pool;
3102 conf->r1bio_pool = newpool;
3103
3104 for (d = d2 = 0; d < conf->raid_disks; d++) {
3105 struct md_rdev *rdev = conf->mirrors[d].rdev;
3106 if (rdev && rdev->raid_disk != d2) {
3107 sysfs_unlink_rdev(mddev, rdev);
3108 rdev->raid_disk = d2;
3109 sysfs_unlink_rdev(mddev, rdev);
3110 if (sysfs_link_rdev(mddev, rdev))
3111 printk(KERN_WARNING
3112 "md/raid1:%s: cannot register rd%d\n",
3113 mdname(mddev), rdev->raid_disk);
3114 }
3115 if (rdev)
3116 newmirrors[d2++].rdev = rdev;
3117 }
3118 kfree(conf->mirrors);
3119 conf->mirrors = newmirrors;
3120 kfree(conf->poolinfo);
3121 conf->poolinfo = newpoolinfo;
3122
3123 spin_lock_irqsave(&conf->device_lock, flags);
3124 mddev->degraded += (raid_disks - conf->raid_disks);
3125 spin_unlock_irqrestore(&conf->device_lock, flags);
3126 conf->raid_disks = mddev->raid_disks = raid_disks;
3127 mddev->delta_disks = 0;
3128
3129 unfreeze_array(conf);
3130
3131 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3132 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3133 md_wakeup_thread(mddev->thread);
3134
3135 mempool_destroy(oldpool);
3136 return 0;
3137}
3138
3139static void raid1_quiesce(struct mddev *mddev, int state)
3140{
3141 struct r1conf *conf = mddev->private;
3142
3143 switch(state) {
3144 case 2: /* wake for suspend */
3145 wake_up(&conf->wait_barrier);
3146 break;
3147 case 1:
3148 freeze_array(conf, 0);
3149 break;
3150 case 0:
3151 unfreeze_array(conf);
3152 break;
3153 }
3154}
3155
3156static void *raid1_takeover(struct mddev *mddev)
3157{
3158 /* raid1 can take over:
3159 * raid5 with 2 devices, any layout or chunk size
3160 */
3161 if (mddev->level == 5 && mddev->raid_disks == 2) {
3162 struct r1conf *conf;
3163 mddev->new_level = 1;
3164 mddev->new_layout = 0;
3165 mddev->new_chunk_sectors = 0;
3166 conf = setup_conf(mddev);
3167 if (!IS_ERR(conf))
3168 /* Array must appear to be quiesced */
3169 conf->array_frozen = 1;
3170 return conf;
3171 }
3172 return ERR_PTR(-EINVAL);
3173}
3174
3175static struct md_personality raid1_personality =
3176{
3177 .name = "raid1",
3178 .level = 1,
3179 .owner = THIS_MODULE,
3180 .make_request = make_request,
3181 .run = run,
3182 .free = raid1_free,
3183 .status = status,
3184 .error_handler = error,
3185 .hot_add_disk = raid1_add_disk,
3186 .hot_remove_disk= raid1_remove_disk,
3187 .spare_active = raid1_spare_active,
3188 .sync_request = sync_request,
3189 .resize = raid1_resize,
3190 .size = raid1_size,
3191 .check_reshape = raid1_reshape,
3192 .quiesce = raid1_quiesce,
3193 .takeover = raid1_takeover,
3194 .congested = raid1_congested,
3195};
3196
3197static int __init raid_init(void)
3198{
3199 return register_md_personality(&raid1_personality);
3200}
3201
3202static void raid_exit(void)
3203{
3204 unregister_md_personality(&raid1_personality);
3205}
3206
3207module_init(raid_init);
3208module_exit(raid_exit);
3209MODULE_LICENSE("GPL");
3210MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3211MODULE_ALIAS("md-personality-3"); /* RAID1 */
3212MODULE_ALIAS("md-raid1");
3213MODULE_ALIAS("md-level-1");
3214
3215module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);