blob: d0b893c0f314212e117babca71df51d4450e782c [file] [log] [blame]
PatrikBuhr608883c2023-04-06 13:17:36 +02001.. This work is licensed under a Creative Commons Attribution 4.0 International License.
2.. SPDX-License-Identifier: CC-BY-4.0
3.. Copyright (C) 2023 Nordix
4
5
6PM Producer
7~~~~~~~~~~~~~
8
9************
10Introduction
11************
12
13The task of the PM Producer is to process PM reports and to distribute requested information to subscribers.
14The main use case is:
15
16* The PM Producer receives a Json object from Kafka which notifies that a new PM report is fetched and is available to processed.
17
18* The actual PM report is in a file, which is stored in an S3 Object store bucket or in the file system (in a mounted volume). The file has the same structure as 3GPP TS 32.432/3GPP TS 32.435, but is converted to json and is extended to contain the information that is encoded the 3GPP measurement report xml file name.
19
20* The PM Producer loads the file and distribute the contents to the subscribers over Kafka according to their subscription parameters. These subscription parameters defines wanted measurement types from given parts of of the network.
21
22The PM Producer registers itself as an information producer of PM measurement data in Information Coordination Service (ICS).
23
24A data consumer can create an information job (data subscription) using the ICS consumer API (for rApps) or the A1-EI (Enrichment Information) API (for NearRT-RICs).
25The PM Producer will get notified when information jobs of type 'PM measurements' are created.
26
27The service is implemented in Java Spring Boot.
28
29.. image:: ./Architecture.png
30 :width: 500pt
31
32This product is a part of :doc:`NONRTRIC <nonrtric:index>`.
33
34**************
35Delivered data
36**************
37When a data consumer (e.g an rApp) creates an Information Job, a Kafka Topic is given as output for the job.
38After filtering, the data will be delivered to the output topic.
39
40The format of the delivered PM measurement is the same as the input format (which in turn is a Json mapping done from
413GPP TS 32.432/3GPP TS 32.435).
42
43The result of the PM filtering preserves the structure of a 3GPP PM report.
44Here follows an example of a resulting delivered PM report.
45
46.. code-block:: javascript
47
48 {
49 "event":{
50 "commonEventHeader":{
51 "domain":"perf3gpp",
52 "eventId":"9efa1210-f285-455f-9c6a-3a659b1f1882",
53 "eventName":"perf3gpp_gnb-Ericsson_pmMeasResult",
54 "sourceName":"O-DU-1122",
55 "reportingEntityName":"",
56 "startEpochMicrosec":951912000000,
57 "lastEpochMicrosec":951912900000,
58 "timeZoneOffset":"+00:00"
59 },
60 "perf3gppFields":{
61 "perf3gppFieldsVersion":"1.0",
62 "measDataCollection":{
63 "granularityPeriod":900,
64 "measuredEntityUserName":"RNC Telecomville",
65 "measuredEntityDn":"SubNetwork=CountryNN,MeContext=MEC-Gbg-1,ManagedElement=RNC-Gbg-1",
66 "measuredEntitySoftwareVersion":"",
67 "measInfoList":[
68 {
69 "measInfoId":{
PatrikBuhr32de6c42023-04-20 06:42:23 +020070 "sMeasInfoId":"PM=1,PmGroup=NRCellDU_GNBDU"
PatrikBuhr608883c2023-04-06 13:17:36 +020071 },
72 "measTypes":{
PatrikBuhr608883c2023-04-06 13:17:36 +020073 "sMeasTypesList":[
74 "succImmediateAssignProcs"
75 ]
76 },
77 "measValuesList":[
78 {
79 "measObjInstId":"RncFunction=RF-1,UtranCell=Gbg-997",
80 "suspectFlag":"false",
81 "measResults":[
82 {
83 "p":1,
84 "sValue":"1113"
85 }
86 ]
87 },
88 {
89 "measObjInstId":"RncFunction=RF-1,UtranCell=Gbg-998",
90 "suspectFlag":"false",
91 "measResults":[
92 {
93 "p":1,
94 "sValue":"234"
95 }
96 ]
97 },
98 {
99 "measObjInstId":"RncFunction=RF-1,UtranCell=Gbg-999",
100 "suspectFlag":"true",
101 "measResults":[
102 {
103 "p":1,
104 "sValue":"789"
105 }
106 ]
107 }
108 ]
109 }
110 ]
111 }
112 }
113 }
114 }
115
116==================
117Sent Kafka headers
118==================
119
120For each filtered result sent to a Kafka topic, there will the following proerties in the Kafa header:
121
122* type-id, this propery is used to indicate the ID of the information type. The value is a string.
123* gzip, if this property exists the object is gzipped (otherwise not). The property has no value.
124* source-name, the name of the source traffical element for the measurements.
125
126
127******************
128Configuration File
129******************
130
131The configuration file defines Kafka topics that should be listened to and registered as subscribeable information types.
132There is an example configuration file in config/application_configuration.json
133
134Each entry will be registered as a subscribe information type in ICS. The following attributes can be used in each entry:
135
136* id, the information type identifier.
137
138* kafkaInputTopic, a Kafka topic to listen to for new file events.
139
140* inputJobType, the information type for new file events subscription.
141
142* inputJobDefinition, the parameters for the new file events subscription.
143
144The last two parameters are used to create the subscription for the input to this component (subscription of file ready events).
145
146
147Below follows an example of a configuration file.
148
149.. code-block:: javascript
150
151 {
152 "types": [
153 {
154 "id": "PmDataOverKafka",
155 "kafkaInputTopic": "FileReadyEvent",
156 "inputJobType": "xml-file-data-to-filestore",
157 "inputJobDefinition": {
158 "kafkaOutputTopic": "FileReadyEvent",
159 "filestore-output-bucket": "pm-files-json",
160 "filterType": "pmdata",
161 "filter": {
162 "inputCompression": "xml.gz",
163 "outputCompression": "none"
164 }
165 }
166 }
167 ]
168 }
169
170**************************
171Information Job Parameters
172**************************
173
174The schema for the parameters for PM measurements subscription is defined in file src/main/resources/typeSchemaPmData.json.
175
176=====================
177typeSchemaPmData.json
178=====================
179
180The type specific json schema for the subscription of PM measurement:
181
182.. code-block:: javascript
183
184 {
185 "$schema": "http://json-schema.org/draft-04/schema#",
186 "type": "object",
187 "additionalProperties": false,
188 "properties": {
189 "filter": {
190 "type": "object",
191 "additionalProperties": false,
192 "properties": {
193 "sourceNames": {
194 "type": "array",
195 "items": [
196 {
197 "type": "string"
198 }
199 ]
200 },
201 "measObjInstIds": {
202 "type": "array",
203 "items": [
204 {
205 "type": "string"
206 }
207 ]
208 },
209 "measTypeSpecs": {
210 "type": "array",
211 "items": [
212 {
213 "type": "object",
214 "properties": {
215 "measuredObjClass": {
216 "type": "string"
217 },
218 "measTypes": {
219 "type": "array",
220 "items": [
221 {
222 "type": "string"
223 }
224 ]
225 }
226 },
227 "required": [
228 "measuredObjClass"
229 ]
230 }
231 ]
232 },
233 "measuredEntityDns": {
234 "type": "array",
235 "items": [
236 {
237 "type": "string"
238 }
239 ]
240 },
241 "pmRopStartTime": {
242 "type": "string"
243 },
244 "pmRopEndTime": {
245 "type": "string"
246 }
247 }
248 },
249 "deliveryInfo": {
250 "type": "object",
251 "additionalProperties": false,
252 "properties": {
253 "topic": {
254 "type": "string"
255 },
256 "bootStrapServers": {
257 "type": "string"
258 }
259 },
260 "required": [
261 "topic"
262 ]
263 }
264 },
265 "required": [
266 "filter", "deliveryInfo"
267 ]
268 }
269
270
271The following properties are defined:
272
273* filter, the value of the filter expression. This selects which data to subscribe for. All fields are optional and excluding a field means that everything is selected.
274
275 * sourceNames, section of the names of the reporting traffical nodes
276 * measObjInstIds, selection of the measured resources. This is the Relative Distingusished Name of the MO that
277 has the counter.
278 If a given value is contained in the filter definition, it will match (partial matching).
279 For instance a value like "NRCellCU" will match "ManagedElement=seliitdus00487,GNBCUCPFunction=1,NRCellCU=32".
280 * measTypeSpecs, selection of measurement types (counters). This consists of:
281
282 * measuredObjClass, the name of the class of the measured resources.
283 * measTypes, the name of the measurement type (counter). The measurement type name is only
284 unique in the scope of an MO class (measured resource).
285
286 * measuredEntityDns, selection of DNs for the traffical elements.
287
288 * pmRopStartTime, if this parameter is specified already collected PM measurements files will be scanned to retrieve historical data.
289 The start file is the time from when the information shall be returned.
290 In this case, the query is only done for files from the given "sourceNames".
291 If this parameter is excluded, only "new" reports will be delivered as they are collected from the traffical nodes.
292
293 * pmRopEndTime, for querying already collected PM measurements. Only relevant if pmRopStartTime.
294 If this parameters is given, no reports will be sent as new files are collected.
295
296* deliveryInfo, defines where the subscribed PM measurements shall be sent.
297
298 * topic, the name of the kafka topic
299 * bootStrapServers, reference to the kafka bus to used. This is optional, if this is omitted the default configured kafka bus is used (which is configured in the application.yaml file).
300
301
302
303Below follows examples of some filters.
304
305.. code-block:: javascript
306
307 {
308 "filter":{
309 "sourceNames":[
310 "O-DU-1122"
311 ],
312 "measObjInstIds":[
313 "UtranCell=Gbg-997"
314 ],
315 "measTypeSpecs":[
316 {
317 "measuredObjClass":"UtranCell",
318 "measTypes":[
319 "succImmediateAssignProcs"
320 ]
321 {
322 ]
323 }
324 }
325
326Here follows an example of a filter that will
327match two counters from all cells in two traffical nodes.
328
329.. code-block:: javascript
330
331 {
332 "filterType":"pmdata",
333 "filter": {
334 "sourceNames":[
335 "O-DU-1122", "O-DU-1123"
336 ],
337 "measTypeSpecs":[
338 {
339 "measuredObjClass":"NRCellCU",
340 "measTypes":[
341 "pmCounterNumber0", "pmCounterNumber1"
342 ]
343 }
344 ],
345
346 }
347 }
348
349
350****************************
351PM measurements subscription
352****************************
353
354The sequence is that a "new file event" is received (from a Kafka topic).
355The file is read from local storage (file storage or S3 object store). For each Job, the specified PM filter is applied to the data
356and the result is sent to the Kafka topic specified by the Job (by the data consumer).
357
358.. image:: ./dedicatedTopics.png
359 :width: 500pt
360
361If several jobs publish to the same Kafka topic (shared topic), the resulting filtered output will be an aggregate of all matching filters.
362So, each consumer will then get more data than requested.
363
364.. image:: ./sharedTopics.png
365 :width: 500pt
366