blob: 3bf22b64705b93bc79988dc060f9078d82537f58 [file] [log] [blame]
/******************************************************************************
*
* Copyright (c) 2019 Intel.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*******************************************************************************/
#include <assert.h>
#include <err.h>
#include <arpa/inet.h>
#include <sys/time.h>
#include <time.h>
#include "common.h"
#include "xran_fh_o_du.h"
#include "xran_pkt.h"
#include "xran_pkt_up.h"
#include "xran_cp_api.h"
#include "xran_up_api.h"
#include "xran_mlog_lnx.h"
extern enum app_state state;
int iq_playback_buffer_size_dl = IQ_PLAYBACK_BUFFER_BYTES;
int iq_playback_buffer_size_ul = IQ_PLAYBACK_BUFFER_BYTES;
int iq_bfw_buffer_size_dl = IQ_PLAYBACK_BUFFER_BYTES;
int iq_bfw_buffer_size_ul = IQ_PLAYBACK_BUFFER_BYTES;
int iq_srs_buffer_size_ul = IQ_PLAYBACK_BUFFER_BYTES;
uint8_t numCCPorts = 1;
/* Number of antennas supported by front-end */
uint8_t num_eAxc = 4;
/* Number of CPRI ports supported by front-end */
int16_t *p_tx_play_buffer[MAX_ANT_CARRIER_SUPPORTED];
int32_t tx_play_buffer_size[MAX_ANT_CARRIER_SUPPORTED];
int32_t tx_play_buffer_position[MAX_ANT_CARRIER_SUPPORTED];
int16_t *p_tx_prach_play_buffer[MAX_ANT_CARRIER_SUPPORTED];
int32_t tx_prach_play_buffer_size[MAX_ANT_CARRIER_SUPPORTED];
int32_t tx_prach_play_buffer_position[MAX_ANT_CARRIER_SUPPORTED];
int16_t *p_tx_srs_play_buffer[XRAN_MAX_SECTOR_NR*XRAN_MAX_ANT_ARRAY_ELM_NR];
int32_t tx_srs_play_buffer_size[XRAN_MAX_SECTOR_NR*XRAN_MAX_ANT_ARRAY_ELM_NR];
int32_t tx_srs_play_buffer_position[XRAN_MAX_SECTOR_NR*XRAN_MAX_ANT_ARRAY_ELM_NR];
int16_t *p_rx_log_buffer[MAX_ANT_CARRIER_SUPPORTED];
int32_t rx_log_buffer_size[MAX_ANT_CARRIER_SUPPORTED];
int32_t rx_log_buffer_position[MAX_ANT_CARRIER_SUPPORTED];
int16_t *p_prach_log_buffer[MAX_ANT_CARRIER_SUPPORTED];
int32_t prach_log_buffer_size[MAX_ANT_CARRIER_SUPPORTED];
int32_t prach_log_buffer_position[MAX_ANT_CARRIER_SUPPORTED];
int16_t *p_srs_log_buffer[XRAN_MAX_SECTOR_NR*XRAN_MAX_ANT_ARRAY_ELM_NR];
int32_t srs_log_buffer_size[XRAN_MAX_SECTOR_NR*XRAN_MAX_ANT_ARRAY_ELM_NR];
int32_t srs_log_buffer_position[XRAN_MAX_SECTOR_NR*XRAN_MAX_ANT_ARRAY_ELM_NR];
int16_t *p_tx_buffer[MAX_ANT_CARRIER_SUPPORTED];
int32_t tx_buffer_size[MAX_ANT_CARRIER_SUPPORTED];
int16_t *p_rx_buffer[MAX_ANT_CARRIER_SUPPORTED];
int32_t rx_buffer_size[MAX_ANT_CARRIER_SUPPORTED];
/* beamforming weights for UL (O-DU) */
int16_t *p_tx_dl_bfw_buffer[MAX_ANT_CARRIER_SUPPORTED];
int32_t tx_dl_bfw_buffer_size[MAX_ANT_CARRIER_SUPPORTED];
int32_t tx_dl_bfw_buffer_position[MAX_ANT_CARRIER_SUPPORTED];
/* beamforming weights for UL (O-DU) */
int16_t *p_tx_ul_bfw_buffer[MAX_ANT_CARRIER_SUPPORTED];
int32_t tx_ul_bfw_buffer_size[MAX_ANT_CARRIER_SUPPORTED];
int32_t tx_ul_bfw_buffer_position[MAX_ANT_CARRIER_SUPPORTED];
/* beamforming weights for UL (O-RU) */
int16_t *p_rx_dl_bfw_buffer[MAX_ANT_CARRIER_SUPPORTED];
int32_t rx_dl_bfw_buffer_size[MAX_ANT_CARRIER_SUPPORTED];
int32_t rx_dl_bfw_buffer_position[MAX_ANT_CARRIER_SUPPORTED];
/* beamforming weights for UL (O-RU) */
int16_t *p_rx_ul_bfw_buffer[MAX_ANT_CARRIER_SUPPORTED];
int32_t rx_ul_bfw_buffer_size[MAX_ANT_CARRIER_SUPPORTED];
int32_t rx_ul_bfw_buffer_position[MAX_ANT_CARRIER_SUPPORTED];
// F1 Tables 38.101-1 Table 5.3.2-1. Maximum transmission bandwidth configuration NRB
uint16_t nNumRbsPerSymF1[3][13] =
{
// 5MHz 10MHz 15MHz 20 MHz 25 MHz 30 MHz 40 MHz 50MHz 60 MHz 70 MHz 80 MHz 90 MHz 100 MHz
{25, 52, 79, 106, 133, 160, 216, 270, 0, 0, 0, 0, 0}, // Numerology 0 (15KHz)
{11, 24, 38, 51, 65, 78, 106, 133, 162, 0, 217, 245, 273}, // Numerology 1 (30KHz)
{0, 11, 18, 24, 31, 38, 51, 65, 79, 0, 107, 121, 135} // Numerology 2 (60KHz)
};
// F2 Tables 38.101-2 Table 5.3.2-1. Maximum transmission bandwidth configuration NRB
uint16_t nNumRbsPerSymF2[2][4] =
{
// 50Mhz 100MHz 200MHz 400MHz
{66, 132, 264, 0}, // Numerology 2 (60KHz)
{32, 66, 132, 264} // Numerology 3 (120KHz)
};
// 38.211 - Table 4.2.1
uint16_t nSubCarrierSpacing[5] =
{
15, // mu = 0
30, // mu = 1
60, // mu = 2
120, // mu = 3
240 // mu = 4
};
// TTI interval in us (slot duration)
uint16_t nTtiInterval[4] =
{
1000, // mu = 0
500, // mu = 1
250, // mu = 2
125, // mu = 3
};
// F1 Tables 38.101-1 Table F.5.3. Window length for normal CP
uint16_t nCpSizeF1[3][13][2] =
{
// 5MHz 10MHz 15MHz 20 MHz 25 MHz 30 MHz 40 MHz 50MHz 60 MHz 70 MHz 80 MHz 90 MHz 100 MHz
{{40, 36}, {80, 72}, {120, 108}, {160, 144}, {160, 144}, {240, 216}, {320, 288}, {320, 288}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}, // Numerology 0 (15KHz)
{{22, 18}, {44, 36}, {66, 54}, {88, 72}, {88, 72}, {132, 108}, {176, 144}, {176, 144}, {264, 216}, {264, 216}, {352, 288}, {352, 288}, {352, 288}}, // Numerology 1 (30KHz)
{ {0, 0}, {26, 18}, {39, 27}, {52, 36}, {52, 36}, {78, 54}, {104, 72}, {104, 72}, {156, 108}, {156, 108}, {208, 144}, {208, 144}, {208, 144}}, // Numerology 2 (60KHz)
};
// F2 Tables 38.101-2 Table F.5.3. Window length for normal CP
int16_t nCpSizeF2[2][4][2] =
{
// 50Mhz 100MHz 200MHz 400MHz
{ {0, 0}, {104, 72}, {208, 144}, {416, 288}}, // Numerology 2 (60KHz)
{{68, 36}, {136, 72}, {272, 144}, {544, 288}}, // Numerology 3 (120KHz)
};
uint32_t gMaxSlotNum;
uint32_t gNumDLCtx;
uint32_t gNumULCtx;
uint32_t gDLResetAdvance;
uint32_t gDLProcAdvance;
uint32_t gULProcAdvance;
static uint16_t g_NumSlotTDDLoop[XRAN_MAX_SECTOR_NR] = { XRAN_NUM_OF_SLOT_IN_TDD_LOOP };
static uint16_t g_NumDLSymSp[XRAN_MAX_SECTOR_NR][XRAN_NUM_OF_SLOT_IN_TDD_LOOP] = {0};
static uint16_t g_NumULSymSp[XRAN_MAX_SECTOR_NR][XRAN_NUM_OF_SLOT_IN_TDD_LOOP] = {0};
static uint8_t g_SlotType[XRAN_MAX_SECTOR_NR][XRAN_NUM_OF_SLOT_IN_TDD_LOOP] = {{XRAN_SLOT_TYPE_INVALID}};
float g_UlRate[XRAN_MAX_SECTOR_NR] = {0.0};
float g_DlRate[XRAN_MAX_SECTOR_NR] = {0.0};
uint32_t app_xran_get_tti_interval(uint8_t nMu)
{
if (nMu < 4)
{
return nTtiInterval[nMu];
}
else
{
printf("ERROR: %s Mu[%d] is not valid\n",__FUNCTION__, nMu);
}
return 0;
}
uint32_t app_xran_get_scs(uint8_t nMu)
{
if (nMu <= 3)
{
return nSubCarrierSpacing[nMu];
}
else
{
printf("ERROR: %s Mu[%d] is not valid\n",__FUNCTION__, nMu);
}
return 0;
}
//-------------------------------------------------------------------------------------------
/** @ingroup group_nr5g_source_phy_common
*
* @param[in] nNumerology - Numerology determine sub carrier spacing, Value: 0->4 0: 15khz, 1: 30khz, 2: 60khz 3: 120khz, 4: 240khz
* @param[in] nBandwidth - Carrier bandwidth for in MHz. Value: 5->400
* @param[in] nAbsFrePointA - Abs Freq Point A of the Carrier Center Frequency for in KHz Value: 450000->52600000
*
* @return Number of RBs in cell
*
* @description
* Returns number of RBs based on 38.101-1 and 38.101-2 for the cell
*
**/
//-------------------------------------------------------------------------------------------
uint16_t app_xran_get_num_rbs(uint32_t nNumerology, uint32_t nBandwidth, uint32_t nAbsFrePointA)
{
uint32_t error = 1;
uint16_t numRBs = 0;
if (nAbsFrePointA <= 6000000)
{
// F1 Tables 38.101-1 Table 5.3.2-1. Maximum transmission bandwidth configuration NRB
if (nNumerology < 3)
{
switch(nBandwidth)
{
case PHY_BW_5_0_MHZ:
numRBs = nNumRbsPerSymF1[nNumerology][0];
error = 0;
break;
case PHY_BW_10_0_MHZ:
numRBs = nNumRbsPerSymF1[nNumerology][1];
error = 0;
break;
case PHY_BW_15_0_MHZ:
numRBs = nNumRbsPerSymF1[nNumerology][2];
error = 0;
break;
case PHY_BW_20_0_MHZ:
numRBs = nNumRbsPerSymF1[nNumerology][3];
error = 0;
break;
case PHY_BW_25_0_MHZ:
numRBs = nNumRbsPerSymF1[nNumerology][4];
error = 0;
break;
case PHY_BW_30_0_MHZ:
numRBs = nNumRbsPerSymF1[nNumerology][5];
error = 0;
break;
case PHY_BW_40_0_MHZ:
numRBs = nNumRbsPerSymF1[nNumerology][6];
error = 0;
break;
case PHY_BW_50_0_MHZ:
numRBs = nNumRbsPerSymF1[nNumerology][7];
error = 0;
break;
case PHY_BW_60_0_MHZ:
numRBs = nNumRbsPerSymF1[nNumerology][8];
error = 0;
break;
case PHY_BW_70_0_MHZ:
numRBs = nNumRbsPerSymF1[nNumerology][9];
error = 0;
break;
case PHY_BW_80_0_MHZ:
numRBs = nNumRbsPerSymF1[nNumerology][10];
error = 0;
break;
case PHY_BW_90_0_MHZ:
numRBs = nNumRbsPerSymF1[nNumerology][11];
error = 0;
break;
case PHY_BW_100_0_MHZ:
numRBs = nNumRbsPerSymF1[nNumerology][12];
error = 0;
break;
default:
error = 1;
break;
}
}
}
else
{
if ((nNumerology >= 2) && (nNumerology <= 3))
{
// F2 Tables 38.101-2 Table 5.3.2-1. Maximum transmission bandwidth configuration NRB
switch(nBandwidth)
{
case PHY_BW_50_0_MHZ:
numRBs = nNumRbsPerSymF2[nNumerology-2][0];
error = 0;
break;
case PHY_BW_100_0_MHZ:
numRBs = nNumRbsPerSymF2[nNumerology-2][1];
error = 0;
break;
case PHY_BW_200_0_MHZ:
numRBs = nNumRbsPerSymF2[nNumerology-2][2];
error = 0;
break;
case PHY_BW_400_0_MHZ:
numRBs = nNumRbsPerSymF2[nNumerology-2][3];
error = 0;
break;
default:
error = 1;
break;
}
}
}
if (error)
{
printf("ERROR: %s: nNumerology[%d] nBandwidth[%d] nAbsFrePointA[%d]\n",__FUNCTION__, nNumerology, nBandwidth, nAbsFrePointA);
}
else
{
printf("%s: nNumerology[%d] nBandwidth[%d] nAbsFrePointA[%d] numRBs[%d]\n",__FUNCTION__, nNumerology, nBandwidth, nAbsFrePointA, numRBs);
}
return numRBs;
}
//-------------------------------------------------------------------------------------------
/** @ingroup phy_cal_nrarfcn
*
* @param[in] center frequency
*
* @return NR-ARFCN
*
* @description
* This calculates NR-ARFCN value according to center frequency
*
**/
//-------------------------------------------------------------------------------------------
uint32_t app_xran_cal_nrarfcn(uint32_t nCenterFreq)
{
uint32_t nDeltaFglobal,nFoffs,nNoffs;
uint32_t nNRARFCN = 0;
if(nCenterFreq > 0 && nCenterFreq < 3000*1000)
{
nDeltaFglobal = 5;
nFoffs = 0;
nNoffs = 0;
}
else if(nCenterFreq >= 3000*1000 && nCenterFreq < 24250*1000)
{
nDeltaFglobal = 15;
nFoffs = 3000*1000;
nNoffs = 600000;
}
else if(nCenterFreq >= 24250*1000 && nCenterFreq <= 100000*1000)
{
nDeltaFglobal = 60;
nFoffs = 24250080;
nNoffs = 2016667;
}
else
{
printf("@@@@ incorrect center frerquency %d\n",nCenterFreq);
return (0);
}
nNRARFCN = ((nCenterFreq - nFoffs)/nDeltaFglobal) + nNoffs;
printf("%s: nCenterFreq[%d] nDeltaFglobal[%d] nFoffs[%d] nNoffs[%d] nNRARFCN[%d]\n", __FUNCTION__, nCenterFreq, nDeltaFglobal, nFoffs, nNoffs, nNRARFCN);
return (nNRARFCN);
}
int32_t app_xran_slot_limit(int32_t nSfIdx)
{
while (nSfIdx < 0) {
nSfIdx += gMaxSlotNum;
}
while (nSfIdx >= gMaxSlotNum) {
nSfIdx -= gMaxSlotNum;
}
return nSfIdx;
}
void app_xran_clear_slot_type(uint32_t nPhyInstanceId)
{
g_UlRate[nPhyInstanceId] = 0.0;
g_DlRate[nPhyInstanceId] = 0.0;
g_NumSlotTDDLoop[nPhyInstanceId] = 1;
}
int32_t app_xran_set_slot_type(uint32_t nPhyInstanceId, uint32_t nFrameDuplexType, uint32_t nTddPeriod, struct xran_slot_config *psSlotConfig)
{
uint32_t nSlotNum, nSymNum, nVal, i;
uint32_t numDlSym, numUlSym, numGuardSym;
uint32_t numDlSlots = 0, numUlSlots = 0, numSpDlSlots = 0, numSpUlSlots = 0, numSpSlots = 0;
char sSlotPattern[XRAN_SLOT_TYPE_LAST][10] = {"IN\0", "DL\0", "UL\0", "SP\0", "FD\0"};
// nPhyInstanceId Carrier ID
// nFrameDuplexType 0 = FDD 1 = TDD
// nTddPeriod Tdd Periodicity
// psSlotConfig[80] Slot Config Structure for nTddPeriod Slots
g_UlRate[nPhyInstanceId] = 0.0;
g_DlRate[nPhyInstanceId] = 0.0;
g_NumSlotTDDLoop[nPhyInstanceId] = nTddPeriod;
for (i = 0; i < XRAN_NUM_OF_SLOT_IN_TDD_LOOP; i++)
{
g_SlotType[nPhyInstanceId][i] = XRAN_SLOT_TYPE_INVALID;
g_NumDLSymSp[nPhyInstanceId][i] = 0;
g_NumULSymSp[nPhyInstanceId][i] = 0;
}
if (nFrameDuplexType == XRAN_FDD)
{
for (i = 0; i < XRAN_NUM_OF_SLOT_IN_TDD_LOOP; i++)
{
g_SlotType[nPhyInstanceId][i] = XRAN_SLOT_TYPE_FDD;
}
g_NumSlotTDDLoop[nPhyInstanceId] = 1;
g_DlRate[nPhyInstanceId] = 1.0;
g_UlRate[nPhyInstanceId] = 1.0;
}
else
{
for (nSlotNum = 0; nSlotNum < nTddPeriod; nSlotNum++)
{
numDlSym = 0;
numUlSym = 0;
numGuardSym = 0;
for (nSymNum = 0; nSymNum < XRAN_NUM_OF_SYMBOL_PER_SLOT; nSymNum++)
{
switch(psSlotConfig[nSlotNum].nSymbolType[nSymNum])
{
case XRAN_SYMBOL_TYPE_DL:
numDlSym++;
break;
case XRAN_SYMBOL_TYPE_GUARD:
numGuardSym++;
break;
default:
numUlSym++;
break;
}
}
// printf("nSlotNum[%d] : numDlSym[%d] numGuardSym[%d] numUlSym[%d]\n", nSlotNum, numDlSym, numGuardSym, numUlSym);
if ((numUlSym == 0) && (numGuardSym == 0))
{
g_SlotType[nPhyInstanceId][nSlotNum] = XRAN_SLOT_TYPE_DL;
numDlSlots++;
}
else if ((numDlSym == 0) && (numGuardSym == 0))
{
g_SlotType[nPhyInstanceId][nSlotNum] = XRAN_SLOT_TYPE_UL;
numUlSlots++;
}
else
{
g_SlotType[nPhyInstanceId][nSlotNum] = XRAN_SLOT_TYPE_SP;
numSpSlots++;
if (numDlSym)
{
numSpDlSlots++;
g_NumDLSymSp[nPhyInstanceId][nSlotNum] = numDlSym;
}
if (numUlSym)
{
numSpUlSlots++;
g_NumULSymSp[nPhyInstanceId][nSlotNum] = numUlSym;
}
}
// printf(" numDlSlots[%d] numUlSlots[%d] numSpSlots[%d] numSpDlSlots[%d] numSpUlSlots[%d]\n", numDlSlots, numUlSlots, numSpSlots, numSpDlSlots, numSpUlSlots);
}
g_DlRate[nPhyInstanceId] = (float)(numDlSlots + numSpDlSlots) / (float)nTddPeriod;
g_UlRate[nPhyInstanceId] = (float)(numUlSlots + numSpUlSlots) / (float)nTddPeriod;
}
printf("set_slot_type: nPhyInstanceId[%d] nFrameDuplexType[%d], nTddPeriod[%d]\n",
nPhyInstanceId, nFrameDuplexType, nTddPeriod);
printf("DLRate[%f] ULRate[%f]\n", g_DlRate[nPhyInstanceId], g_UlRate[nPhyInstanceId]);
nVal = (g_NumSlotTDDLoop[nPhyInstanceId] < 10) ? g_NumSlotTDDLoop[nPhyInstanceId] : 10;
printf("SlotPattern:\n");
printf("Slot: ");
for (nSlotNum = 0; nSlotNum < nVal; nSlotNum++)
{
printf("%d ", nSlotNum);
}
printf("\n");
printf(" %3d ", 0);
for (nSlotNum = 0, i = 0; nSlotNum < g_NumSlotTDDLoop[nPhyInstanceId]; nSlotNum++)
{
printf("%s ", sSlotPattern[g_SlotType[nPhyInstanceId][nSlotNum]]);
i++;
if ((i == 10) && ((nSlotNum+1) < g_NumSlotTDDLoop[nPhyInstanceId]))
{
printf("\n");
printf(" %3d ", nSlotNum);
i = 0;
}
}
printf("\n\n");
return 0;
}
int32_t app_xran_get_slot_type(int32_t nCellIdx, int32_t nSlotdx, int32_t nType)
{
int32_t nSfIdxMod, nSfType, ret = 0;
nSfIdxMod = app_xran_slot_limit(nSlotdx) % ((g_NumSlotTDDLoop[nCellIdx] > 0) ? g_NumSlotTDDLoop[nCellIdx]: 1);
nSfType = g_SlotType[nCellIdx][nSfIdxMod];
if (nSfType == nType)
{
ret = 1;
}
else if (nSfType == XRAN_SLOT_TYPE_SP)
{
if ((nType == XRAN_SLOT_TYPE_DL) && g_NumDLSymSp[nCellIdx][nSfIdxMod])
{
ret = 1;
}
if ((nType == XRAN_SLOT_TYPE_UL) && g_NumULSymSp[nCellIdx][nSfIdxMod])
{
ret = 1;
}
}
else if (nSfType == XRAN_SLOT_TYPE_FDD)
{
ret = 1;
}
return ret;
}
void sys_save_buf_to_file(char *filename, char *bufname, unsigned char *pBuffer, unsigned int size, unsigned int buffers_num)
{
if (size)
{
if (filename && bufname)
{
FILE *file;
printf("Storing %s to file %s: ", bufname, filename);
file = fopen(filename, "wb");
if (file == NULL)
{
printf("can't open file %s!!!", filename);
}
else
{
uint32_t num;
num = fwrite(pBuffer, buffers_num, size, file);
fflush(file);
fclose(file);
printf("from addr (0x%lx) size (%d) bytes num (%d)", (uint64_t)pBuffer, size, num);
}
printf(" \n");
}
else
{
printf(" the file name, buffer name are not set!!!");
}
}
else
{
printf(" the %s is free: size = %d bytes!!!", bufname, size);
}
}
int sys_load_file_to_buff(char *filename, char *bufname, unsigned char *pBuffer, unsigned int size, unsigned int buffers_num)
{
unsigned int file_size = 0;
int num= 0;
if (size)
{
if (filename && bufname)
{
FILE *file;
printf("Loading file %s to %s: ", filename, bufname);
file = fopen(filename, "rb");
if (file == NULL)
{
printf("can't open file %s!!!", filename);
exit(-1);
}
else
{
fseek(file, 0, SEEK_END);
file_size = ftell(file);
fseek(file, 0, SEEK_SET);
if ((file_size > size) || (file_size == 0))
file_size = size;
printf("Reading IQ samples from file: File Size: %d [Buffer Size: %d]\n", file_size, size);
num = fread(pBuffer, buffers_num, size, file);
fflush(file);
fclose(file);
printf("from addr (0x%lx) size (%d) bytes num (%d)", (uint64_t)pBuffer, file_size, num);
}
printf(" \n");
}
else
{
printf(" the file name, buffer name are not set!!!");
}
}
else
{
printf(" the %s is free: size = %d bytes!!!", bufname, size);
}
return num;
}
void sys_save_buf_to_file_txt(char *filename, char *bufname, unsigned char *pBuffer, unsigned int size, unsigned int buffers_num)
{
unsigned int i;
int ret = 0;
if (pBuffer == NULL)
return;
if (size)
{
if (filename && bufname)
{
FILE *file;
printf("Storing %s to file %s: ", bufname, filename);
file = fopen(filename, "w");
if (file == NULL)
{
printf("can't open file %s!!!", filename);
exit(-1);
}
else
{
uint32_t num = 0;
signed short *ptr = (signed short*)pBuffer;
for (i = 0; i < (size/((unsigned int)sizeof(signed short) /** 2 * 2 * 2*/)); i = i + 2)
{
#ifndef CSCOPE_DEBUG
ret = fprintf(file,"%d %d\n", ptr[i], ptr[i + 1]);
#else
ret = fprintf(file,"%d %d ", ptr[i], ptr[i + 1]);
/* I data => Ramp data, from 1 to 792.
Q data => Contains time information of the current symbol:
Bits [15:14] = Antenna-ID
Bits [13:12] = “00”
Bits [11:8] = Subframe-ID
Bits [7:4] = Slot-ID
Bits [3:0] = Symbol-ID */
fprintf(file, "0x%04x: ant %d Subframe-ID %d Slot-ID %d Symbol-ID %d\n",
ptr[i + 1], (ptr[i + 1]>>14) & 0x3, (ptr[i + 1]>>8) & 0xF, (ptr[i + 1]>>4) & 0xF, (ptr[i + 1]>>0) & 0xF);
#endif
if (ret < 0)
{
printf("fprintf %d\n", ret);
fclose(file);
break;
}
num++;
}
fflush(file);
fclose(file);
printf("from addr (0x%lx) size (%d) IQ num (%d)", (uint64_t)pBuffer, size, num);
}
printf(" \n");
}
else
{
printf(" the file name, buffer name are not set!!!");
}
}
else
{
printf(" the %s is free: size = %d bytes!!!", bufname, size);
}
}