Simon Kelley | 2d76586 | 2020-11-12 22:06:07 +0000 | [diff] [blame] | 1 | /* Copyright (c) 2012-2020 Simon Kelley |
| 2 | |
| 3 | This program is free software; you can redistribute it and/or modify |
| 4 | it under the terms of the GNU General Public License as published by |
| 5 | the Free Software Foundation; version 2 dated June, 1991, or |
| 6 | (at your option) version 3 dated 29 June, 2007. |
| 7 | |
| 8 | This program is distributed in the hope that it will be useful, |
| 9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | GNU General Public License for more details. |
| 12 | |
| 13 | You should have received a copy of the GNU General Public License |
| 14 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 15 | */ |
| 16 | |
| 17 | |
| 18 | /* Hash the question section. This is used to safely detect query |
| 19 | retransmission and to detect answers to questions we didn't ask, which |
| 20 | might be poisoning attacks. Note that we decode the name rather |
| 21 | than CRC the raw bytes, since replies might be compressed differently. |
| 22 | We ignore case in the names for the same reason. |
| 23 | |
| 24 | The hash used is SHA-256. If we're building with DNSSEC support, |
| 25 | we use the Nettle cypto library. If not, we prefer not to |
| 26 | add a dependency on Nettle, and use a stand-alone implementaion. |
| 27 | */ |
| 28 | |
| 29 | #include "dnsmasq.h" |
| 30 | |
Simon Kelley | a69b017 | 2021-01-24 21:53:28 +0000 | [diff] [blame] | 31 | #if defined(HAVE_DNSSEC) || defined(HAVE_CRYPTOHASH) |
Simon Kelley | e75069f | 2021-01-22 22:50:25 +0000 | [diff] [blame] | 32 | |
| 33 | static const struct nettle_hash *hash; |
| 34 | static void *ctx; |
| 35 | static unsigned char *digest; |
| 36 | |
| 37 | void hash_questions_init(void) |
| 38 | { |
Simon Kelley | 2029501 | 2021-01-24 22:25:13 +0000 | [diff] [blame] | 39 | if (!(hash = hash_find("sha256"))) |
Simon Kelley | e75069f | 2021-01-22 22:50:25 +0000 | [diff] [blame] | 40 | die(_("Failed to create SHA-256 hash object"), NULL, EC_MISC); |
Simon Kelley | 2029501 | 2021-01-24 22:25:13 +0000 | [diff] [blame] | 41 | |
| 42 | ctx = safe_malloc(hash->context_size); |
| 43 | digest = safe_malloc(hash->digest_size); |
Simon Kelley | e75069f | 2021-01-22 22:50:25 +0000 | [diff] [blame] | 44 | } |
| 45 | |
Simon Kelley | 2d76586 | 2020-11-12 22:06:07 +0000 | [diff] [blame] | 46 | unsigned char *hash_questions(struct dns_header *header, size_t plen, char *name) |
| 47 | { |
| 48 | int q; |
| 49 | unsigned char *p = (unsigned char *)(header+1); |
Simon Kelley | 2d76586 | 2020-11-12 22:06:07 +0000 | [diff] [blame] | 50 | |
Simon Kelley | e75069f | 2021-01-22 22:50:25 +0000 | [diff] [blame] | 51 | hash->init(ctx); |
| 52 | |
Simon Kelley | 2d76586 | 2020-11-12 22:06:07 +0000 | [diff] [blame] | 53 | for (q = ntohs(header->qdcount); q != 0; q--) |
| 54 | { |
| 55 | char *cp, c; |
| 56 | |
| 57 | if (!extract_name(header, plen, &p, name, 1, 4)) |
| 58 | break; /* bad packet */ |
| 59 | |
| 60 | for (cp = name; (c = *cp); cp++) |
| 61 | if (c >= 'A' && c <= 'Z') |
| 62 | *cp += 'a' - 'A'; |
| 63 | |
| 64 | hash->update(ctx, cp - name, (unsigned char *)name); |
| 65 | /* CRC the class and type as well */ |
| 66 | hash->update(ctx, 4, p); |
| 67 | |
| 68 | p += 4; |
| 69 | if (!CHECK_LEN(header, p, plen, 0)) |
| 70 | break; /* bad packet */ |
| 71 | } |
| 72 | |
| 73 | hash->digest(ctx, hash->digest_size, digest); |
| 74 | return digest; |
| 75 | } |
| 76 | |
Simon Kelley | a69b017 | 2021-01-24 21:53:28 +0000 | [diff] [blame] | 77 | #else /* HAVE_DNSSEC || HAVE_CRYPTOHASH */ |
Simon Kelley | 2d76586 | 2020-11-12 22:06:07 +0000 | [diff] [blame] | 78 | |
| 79 | #define SHA256_BLOCK_SIZE 32 // SHA256 outputs a 32 byte digest |
| 80 | typedef unsigned char BYTE; // 8-bit byte |
| 81 | typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines |
| 82 | |
| 83 | typedef struct { |
| 84 | BYTE data[64]; |
| 85 | WORD datalen; |
| 86 | unsigned long long bitlen; |
| 87 | WORD state[8]; |
| 88 | } SHA256_CTX; |
| 89 | |
| 90 | static void sha256_init(SHA256_CTX *ctx); |
| 91 | static void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len); |
| 92 | static void sha256_final(SHA256_CTX *ctx, BYTE hash[]); |
| 93 | |
Simon Kelley | e75069f | 2021-01-22 22:50:25 +0000 | [diff] [blame] | 94 | void hash_questions_init(void) |
| 95 | { |
| 96 | } |
Simon Kelley | 2d76586 | 2020-11-12 22:06:07 +0000 | [diff] [blame] | 97 | |
| 98 | unsigned char *hash_questions(struct dns_header *header, size_t plen, char *name) |
| 99 | { |
| 100 | int q; |
| 101 | unsigned char *p = (unsigned char *)(header+1); |
| 102 | SHA256_CTX ctx; |
| 103 | static BYTE digest[SHA256_BLOCK_SIZE]; |
| 104 | |
| 105 | sha256_init(&ctx); |
| 106 | |
| 107 | for (q = ntohs(header->qdcount); q != 0; q--) |
| 108 | { |
| 109 | char *cp, c; |
| 110 | |
| 111 | if (!extract_name(header, plen, &p, name, 1, 4)) |
| 112 | break; /* bad packet */ |
| 113 | |
| 114 | for (cp = name; (c = *cp); cp++) |
| 115 | if (c >= 'A' && c <= 'Z') |
| 116 | *cp += 'a' - 'A'; |
| 117 | |
| 118 | sha256_update(&ctx, (BYTE *)name, cp - name); |
| 119 | /* CRC the class and type as well */ |
| 120 | sha256_update(&ctx, (BYTE *)p, 4); |
| 121 | |
| 122 | p += 4; |
| 123 | if (!CHECK_LEN(header, p, plen, 0)) |
| 124 | break; /* bad packet */ |
| 125 | } |
| 126 | |
| 127 | sha256_final(&ctx, digest); |
| 128 | return (unsigned char *)digest; |
| 129 | } |
| 130 | |
| 131 | /* Code from here onwards comes from https://github.com/B-Con/crypto-algorithms |
| 132 | and was written by Brad Conte (brad@bradconte.com), to whom all credit is given. |
| 133 | |
| 134 | This code is in the public domain, and the copyright notice at the head of this |
| 135 | file does not apply to it. |
| 136 | */ |
| 137 | |
| 138 | |
| 139 | /****************************** MACROS ******************************/ |
| 140 | #define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b)))) |
| 141 | #define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b)))) |
| 142 | |
| 143 | #define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z))) |
| 144 | #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| 145 | #define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22)) |
| 146 | #define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25)) |
| 147 | #define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3)) |
| 148 | #define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10)) |
| 149 | |
| 150 | /**************************** VARIABLES *****************************/ |
| 151 | static const WORD k[64] = { |
| 152 | 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5, |
| 153 | 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174, |
| 154 | 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da, |
| 155 | 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967, |
| 156 | 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85, |
| 157 | 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070, |
| 158 | 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3, |
| 159 | 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 |
| 160 | }; |
| 161 | |
| 162 | /*********************** FUNCTION DEFINITIONS ***********************/ |
| 163 | static void sha256_transform(SHA256_CTX *ctx, const BYTE data[]) |
| 164 | { |
| 165 | WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64]; |
| 166 | |
| 167 | for (i = 0, j = 0; i < 16; ++i, j += 4) |
| 168 | m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]); |
| 169 | for ( ; i < 64; ++i) |
| 170 | m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16]; |
| 171 | |
| 172 | a = ctx->state[0]; |
| 173 | b = ctx->state[1]; |
| 174 | c = ctx->state[2]; |
| 175 | d = ctx->state[3]; |
| 176 | e = ctx->state[4]; |
| 177 | f = ctx->state[5]; |
| 178 | g = ctx->state[6]; |
| 179 | h = ctx->state[7]; |
| 180 | |
| 181 | for (i = 0; i < 64; ++i) |
| 182 | { |
| 183 | t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i]; |
| 184 | t2 = EP0(a) + MAJ(a,b,c); |
| 185 | h = g; |
| 186 | g = f; |
| 187 | f = e; |
| 188 | e = d + t1; |
| 189 | d = c; |
| 190 | c = b; |
| 191 | b = a; |
| 192 | a = t1 + t2; |
| 193 | } |
| 194 | |
| 195 | ctx->state[0] += a; |
| 196 | ctx->state[1] += b; |
| 197 | ctx->state[2] += c; |
| 198 | ctx->state[3] += d; |
| 199 | ctx->state[4] += e; |
| 200 | ctx->state[5] += f; |
| 201 | ctx->state[6] += g; |
| 202 | ctx->state[7] += h; |
| 203 | } |
| 204 | |
| 205 | static void sha256_init(SHA256_CTX *ctx) |
| 206 | { |
| 207 | ctx->datalen = 0; |
| 208 | ctx->bitlen = 0; |
| 209 | ctx->state[0] = 0x6a09e667; |
| 210 | ctx->state[1] = 0xbb67ae85; |
| 211 | ctx->state[2] = 0x3c6ef372; |
| 212 | ctx->state[3] = 0xa54ff53a; |
| 213 | ctx->state[4] = 0x510e527f; |
| 214 | ctx->state[5] = 0x9b05688c; |
| 215 | ctx->state[6] = 0x1f83d9ab; |
| 216 | ctx->state[7] = 0x5be0cd19; |
| 217 | } |
| 218 | |
| 219 | static void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len) |
| 220 | { |
| 221 | WORD i; |
| 222 | |
| 223 | for (i = 0; i < len; ++i) |
| 224 | { |
| 225 | ctx->data[ctx->datalen] = data[i]; |
| 226 | ctx->datalen++; |
| 227 | if (ctx->datalen == 64) { |
| 228 | sha256_transform(ctx, ctx->data); |
| 229 | ctx->bitlen += 512; |
| 230 | ctx->datalen = 0; |
| 231 | } |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | static void sha256_final(SHA256_CTX *ctx, BYTE hash[]) |
| 236 | { |
| 237 | WORD i; |
| 238 | |
| 239 | i = ctx->datalen; |
| 240 | |
| 241 | // Pad whatever data is left in the buffer. |
| 242 | if (ctx->datalen < 56) |
| 243 | { |
| 244 | ctx->data[i++] = 0x80; |
| 245 | while (i < 56) |
| 246 | ctx->data[i++] = 0x00; |
| 247 | } |
| 248 | else |
| 249 | { |
| 250 | ctx->data[i++] = 0x80; |
| 251 | while (i < 64) |
| 252 | ctx->data[i++] = 0x00; |
| 253 | sha256_transform(ctx, ctx->data); |
| 254 | memset(ctx->data, 0, 56); |
| 255 | } |
| 256 | |
| 257 | // Append to the padding the total message's length in bits and transform. |
| 258 | ctx->bitlen += ctx->datalen * 8; |
| 259 | ctx->data[63] = ctx->bitlen; |
| 260 | ctx->data[62] = ctx->bitlen >> 8; |
| 261 | ctx->data[61] = ctx->bitlen >> 16; |
| 262 | ctx->data[60] = ctx->bitlen >> 24; |
| 263 | ctx->data[59] = ctx->bitlen >> 32; |
| 264 | ctx->data[58] = ctx->bitlen >> 40; |
| 265 | ctx->data[57] = ctx->bitlen >> 48; |
| 266 | ctx->data[56] = ctx->bitlen >> 56; |
| 267 | sha256_transform(ctx, ctx->data); |
| 268 | |
| 269 | // Since this implementation uses little endian byte ordering and SHA uses big endian, |
| 270 | // reverse all the bytes when copying the final state to the output hash. |
| 271 | for (i = 0; i < 4; ++i) |
| 272 | { |
| 273 | hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff; |
| 274 | hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff; |
| 275 | hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff; |
| 276 | hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff; |
| 277 | hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff; |
| 278 | hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff; |
| 279 | hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff; |
| 280 | hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff; |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | #endif |