blob: f4902f7f34ea943830bd8eec7ec851036af57cdb [file] [log] [blame]
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +02001/*
2 * Copyright (C) 2021 Denys Vlasenko
3 *
4 * Licensed under GPLv2, see file LICENSE in this source tree.
5 */
6#include "tls.h"
7
8#define SP_DEBUG 0
9#define FIXED_SECRET 0
10#define FIXED_PEER_PUBKEY 0
11
12#if SP_DEBUG
13# define dbg(...) fprintf(stderr, __VA_ARGS__)
14static void dump_hex(const char *fmt, const void *vp, int len)
15{
16 char hexbuf[32 * 1024 + 4];
17 const uint8_t *p = vp;
18
19 bin2hex(hexbuf, (void*)p, len)[0] = '\0';
20 dbg(fmt, hexbuf);
21}
22#else
23# define dbg(...) ((void)0)
24# define dump_hex(...) ((void)0)
25#endif
26
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +020027typedef int32_t sp_digit;
28
29/* The code below is taken from parts of
30 * wolfssl-3.15.3/wolfcrypt/src/sp_c32.c
31 * and heavily modified.
32 * Header comment is kept intact:
33 */
34
35/* sp.c
36 *
37 * Copyright (C) 2006-2018 wolfSSL Inc.
38 *
39 * This file is part of wolfSSL.
40 *
41 * wolfSSL is free software; you can redistribute it and/or modify
42 * it under the terms of the GNU General Public License as published by
43 * the Free Software Foundation; either version 2 of the License, or
44 * (at your option) any later version.
45 *
46 * wolfSSL is distributed in the hope that it will be useful,
47 * but WITHOUT ANY WARRANTY; without even the implied warranty of
48 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
49 * GNU General Public License for more details.
50 *
51 * You should have received a copy of the GNU General Public License
52 * along with this program; if not, write to the Free Software
53 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
54 */
55
56/* Implementation by Sean Parkinson. */
57
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +020058typedef struct sp_point {
59 sp_digit x[2 * 10];
60 sp_digit y[2 * 10];
61 sp_digit z[2 * 10];
62 int infinity;
63} sp_point;
64
65/* The modulus (prime) of the curve P256. */
66static const sp_digit p256_mod[10] = {
67 0x3ffffff,0x3ffffff,0x3ffffff,0x003ffff,0x0000000,
68 0x0000000,0x0000000,0x0000400,0x3ff0000,0x03fffff,
69};
70
71#define p256_mp_mod ((sp_digit)0x000001)
72
Denys Vlasenko77145182021-10-01 13:51:39 +020073/* Normalize the values in each word to 26 bits. */
74static void sp_256_norm_10(sp_digit* a)
75{
76 int i;
77 for (i = 0; i < 9; i++) {
78 a[i+1] += a[i] >> 26;
79 a[i] &= 0x3ffffff;
80 }
81}
82
Denys Vlasenkoe7305052021-10-05 13:30:48 +020083/* Write r as big endian to byte array.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +020084 * Fixed length number of bytes written: 32
85 *
86 * r A single precision integer.
87 * a Byte array.
88 */
Denys Vlasenkoe7305052021-10-05 13:30:48 +020089static void sp_256_to_bin_10(sp_digit* r, uint8_t* a)
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +020090{
Denys Vlasenko12040122021-04-26 20:24:34 +020091 int i, j, s = 0, b;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +020092
Denys Vlasenko77145182021-10-01 13:51:39 +020093 sp_256_norm_10(r);
94
Denys Vlasenko12040122021-04-26 20:24:34 +020095 j = 256 / 8 - 1;
96 a[j] = 0;
97 for (i = 0; i < 10 && j >= 0; i++) {
98 b = 0;
99 a[j--] |= r[i] << s; b += 8 - s;
100 if (j < 0)
101 break;
102 while (b < 26) {
103 a[j--] = r[i] >> b; b += 8;
104 if (j < 0)
105 break;
106 }
107 s = 8 - (b - 26);
108 if (j >= 0)
109 a[j] = 0;
110 if (s != 0)
111 j++;
112 }
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200113}
114
Denys Vlasenkoe7305052021-10-05 13:30:48 +0200115/* Read big endian unsigned byte array into r.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200116 *
117 * r A single precision integer.
118 * a Byte array.
119 * n Number of bytes in array to read.
120 */
Denys Vlasenkoe7305052021-10-05 13:30:48 +0200121static void sp_256_from_bin_10(sp_digit* r, const uint8_t* a)
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200122{
Denys Vlasenko12040122021-04-26 20:24:34 +0200123 int i, j = 0, s = 0;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200124
Denys Vlasenko12040122021-04-26 20:24:34 +0200125 r[0] = 0;
Denys Vlasenkoe7305052021-10-05 13:30:48 +0200126 for (i = 32 - 1; i >= 0; i--) {
Denys Vlasenko12040122021-04-26 20:24:34 +0200127 r[j] |= ((sp_digit)a[i]) << s;
128 if (s >= 18) {
129 r[j] &= 0x3ffffff;
130 s = 26 - s;
Denys Vlasenko12040122021-04-26 20:24:34 +0200131 r[++j] = a[i] >> s;
132 s = 8 - s;
133 }
134 else
135 s += 8;
136 }
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200137}
138
139/* Convert a point of big-endian 32-byte x,y pair to type sp_point. */
140static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32)
141{
Denys Vlasenko12040122021-04-26 20:24:34 +0200142 memset(p, 0, sizeof(*p));
143 /*p->infinity = 0;*/
Denys Vlasenkoe7305052021-10-05 13:30:48 +0200144 sp_256_from_bin_10(p->x, bin2x32);
145 sp_256_from_bin_10(p->y, bin2x32 + 32);
146 p->z[0] = 1; /* p->z = 1 */
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200147}
148
Denys Vlasenkob3b17132021-04-26 16:53:53 +0200149/* Compare a with b.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200150 *
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200151 * return -ve, 0 or +ve if a is less than, equal to or greater than b
152 * respectively.
153 */
154static sp_digit sp_256_cmp_10(const sp_digit* a, const sp_digit* b)
155{
Denys Vlasenko12040122021-04-26 20:24:34 +0200156 sp_digit r;
157 int i;
158 for (i = 9; i >= 0; i--) {
159 r = a[i] - b[i];
160 if (r != 0)
161 break;
162 }
163 return r;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200164}
165
166/* Compare two numbers to determine if they are equal.
167 *
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200168 * return 1 when equal and 0 otherwise.
169 */
170static int sp_256_cmp_equal_10(const sp_digit* a, const sp_digit* b)
171{
Denys Vlasenko12040122021-04-26 20:24:34 +0200172 return sp_256_cmp_10(a, b) == 0;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200173}
174
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200175/* Add b to a into r. (r = a + b) */
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200176static void sp_256_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b)
177{
Denys Vlasenko12040122021-04-26 20:24:34 +0200178 int i;
179 for (i = 0; i < 10; i++)
180 r[i] = a[i] + b[i];
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200181}
182
Denys Vlasenko9a40be42021-04-26 21:58:04 +0200183/* Sub b from a into r. (r = a - b) */
184static void sp_256_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b)
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200185{
Denys Vlasenko12040122021-04-26 20:24:34 +0200186 int i;
187 for (i = 0; i < 10; i++)
Denys Vlasenko9a40be42021-04-26 21:58:04 +0200188 r[i] = a[i] - b[i];
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200189}
190
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200191/* Multiply a and b into r. (r = a * b) */
192static void sp_256_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b)
193{
194 int i, j, k;
195 int64_t c;
196
197 c = ((int64_t)a[9]) * b[9];
198 r[19] = (sp_digit)(c >> 26);
199 c = (c & 0x3ffffff) << 26;
200 for (k = 17; k >= 0; k--) {
201 for (i = 9; i >= 0; i--) {
202 j = k - i;
203 if (j >= 10)
204 break;
205 if (j < 0)
206 continue;
207 c += ((int64_t)a[i]) * b[j];
208 }
209 r[k + 2] += c >> 52;
210 r[k + 1] = (c >> 26) & 0x3ffffff;
211 c = (c & 0x3ffffff) << 26;
212 }
213 r[0] = (sp_digit)(c >> 26);
214}
215
Denys Vlasenko389329e2021-10-05 13:39:33 +0200216/* Shift number right one bit. Bottom bit is lost. */
Denys Vlasenkoe7305052021-10-05 13:30:48 +0200217static void sp_256_rshift1_10(sp_digit* r, sp_digit* a)
218{
219 int i;
220 for (i = 0; i < 9; i++)
221 r[i] = ((a[i] >> 1) | (a[i + 1] << 25)) & 0x3ffffff;
222 r[9] = a[9] >> 1;
223}
224
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200225/* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m) */
226static void sp_256_div2_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
227{
228 if (a[0] & 1)
229 sp_256_add_10(r, a, m);
230 sp_256_norm_10(r);
231 sp_256_rshift1_10(r, r);
232}
233
234/* Add two Montgomery form numbers (r = a + b % m) */
235static void sp_256_mont_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
236 const sp_digit* m)
237{
238 sp_256_add_10(r, a, b);
239 sp_256_norm_10(r);
240 if ((r[9] >> 22) > 0)
241 sp_256_sub_10(r, r, m);
242 sp_256_norm_10(r);
243}
244
245/* Subtract two Montgomery form numbers (r = a - b % m) */
246static void sp_256_mont_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
247 const sp_digit* m)
248{
249 sp_256_sub_10(r, a, b);
250 if (r[9] >> 22)
251 sp_256_add_10(r, r, m);
252 sp_256_norm_10(r);
253}
254
255/* Double a Montgomery form number (r = a + a % m) */
256static void sp_256_mont_dbl_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
257{
258 sp_256_add_10(r, a, a);
259 sp_256_norm_10(r);
260 if ((r[9] >> 22) > 0)
261 sp_256_sub_10(r, r, m);
262 sp_256_norm_10(r);
263}
264
265/* Triple a Montgomery form number (r = a + a + a % m) */
266static void sp_256_mont_tpl_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
267{
268 sp_256_add_10(r, a, a);
269 sp_256_norm_10(r);
270 if ((r[9] >> 22) > 0)
271 sp_256_sub_10(r, r, m);
272 sp_256_norm_10(r);
273 sp_256_add_10(r, r, a);
274 sp_256_norm_10(r);
275 if ((r[9] >> 22) > 0)
276 sp_256_sub_10(r, r, m);
277 sp_256_norm_10(r);
278}
279
280/* Shift the result in the high 256 bits down to the bottom. */
281static void sp_256_mont_shift_10(sp_digit* r, const sp_digit* a)
282{
283 int i;
284 sp_digit n, s;
285
286 s = a[10];
287 n = a[9] >> 22;
288 for (i = 0; i < 9; i++) {
289 n += (s & 0x3ffffff) << 4;
290 r[i] = n & 0x3ffffff;
291 n >>= 26;
292 s = a[11 + i] + (s >> 26);
293 }
294 n += s << 4;
295 r[9] = n;
296 memset(&r[10], 0, sizeof(*r) * 10);
297}
298
Denys Vlasenkoe7305052021-10-05 13:30:48 +0200299/* Mul a by scalar b and add into r. (r += a * b) */
300static void sp_256_mul_add_10(sp_digit* r, const sp_digit* a, sp_digit b)
301{
302 int64_t t = 0;
303 int i;
304
305 for (i = 0; i < 10; i++) {
306 t += ((int64_t)b * a[i]) + r[i];
307 r[i] = t & 0x3ffffff;
308 t >>= 26;
309 }
310 r[10] += t;
311}
312
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200313/* Reduce the number back to 256 bits using Montgomery reduction.
314 *
315 * a A single precision number to reduce in place.
316 * m The single precision number representing the modulus.
317 * mp The digit representing the negative inverse of m mod 2^n.
318 */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200319static void sp_256_mont_reduce_10(sp_digit* a /*, const sp_digit* m, sp_digit mp*/)
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200320{
Denys Vlasenko389329e2021-10-05 13:39:33 +0200321 const sp_digit* m = p256_mod;
322 sp_digit mp = p256_mp_mod;
323
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200324 int i;
325 sp_digit mu;
326
327 if (mp != 1) {
328 for (i = 0; i < 9; i++) {
329 mu = (a[i] * mp) & 0x3ffffff;
330 sp_256_mul_add_10(a+i, m, mu);
331 a[i+1] += a[i] >> 26;
332 }
Denys Vlasenkoe7305052021-10-05 13:30:48 +0200333 mu = (a[i] * mp) & 0x03fffff;
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200334 sp_256_mul_add_10(a+i, m, mu);
335 a[i+1] += a[i] >> 26;
336 a[i] &= 0x3ffffff;
337 }
Denys Vlasenko389329e2021-10-05 13:39:33 +0200338 else { /* Same code for explicit mp == 1 (which is always the case for P256) */
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200339 for (i = 0; i < 9; i++) {
340 mu = a[i] & 0x3ffffff;
Denys Vlasenkoe7305052021-10-05 13:30:48 +0200341 sp_256_mul_add_10(a+i, m, mu);
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200342 a[i+1] += a[i] >> 26;
343 }
Denys Vlasenkoe7305052021-10-05 13:30:48 +0200344 mu = a[i] & 0x03fffff;
345 sp_256_mul_add_10(a+i, m, mu);
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200346 a[i+1] += a[i] >> 26;
347 a[i] &= 0x3ffffff;
348 }
349
350 sp_256_mont_shift_10(a, a);
Denys Vlasenko389329e2021-10-05 13:39:33 +0200351//TODO: can below condition ever be true? Doesn't it require 512+th bit(s) in a to be set?
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200352 if ((a[9] >> 22) > 0)
Denys Vlasenko389329e2021-10-05 13:39:33 +0200353{
354dbg("THIS HAPPENS\n");
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200355 sp_256_sub_10(a, a, m);
Denys Vlasenko389329e2021-10-05 13:39:33 +0200356}
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200357 sp_256_norm_10(a);
358}
359
360/* Multiply two Montogmery form numbers mod the modulus (prime).
361 * (r = a * b mod m)
362 *
363 * r Result of multiplication.
364 * a First number to multiply in Montogmery form.
365 * b Second number to multiply in Montogmery form.
366 * m Modulus (prime).
367 * mp Montogmery mulitplier.
368 */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200369static void sp_256_mont_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b
370 /*, const sp_digit* m, sp_digit mp*/)
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200371{
Denys Vlasenko389329e2021-10-05 13:39:33 +0200372 //const sp_digit* m = p256_mod;
373 //sp_digit mp = p256_mp_mod;
374
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200375 sp_256_mul_10(r, a, b);
Denys Vlasenko389329e2021-10-05 13:39:33 +0200376 sp_256_mont_reduce_10(r /*, m, mp*/);
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200377}
378
379/* Square the Montgomery form number. (r = a * a mod m)
380 *
381 * r Result of squaring.
382 * a Number to square in Montogmery form.
383 * m Modulus (prime).
384 * mp Montogmery mulitplier.
385 */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200386static void sp_256_mont_sqr_10(sp_digit* r, const sp_digit* a
387 /*, const sp_digit* m, sp_digit mp*/)
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200388{
Denys Vlasenko389329e2021-10-05 13:39:33 +0200389 //const sp_digit* m = p256_mod;
390 //sp_digit mp = p256_mp_mod;
391
392 sp_256_mont_mul_10(r, a, a /*, m, mp*/);
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200393}
394
395/* Invert the number, in Montgomery form, modulo the modulus (prime) of the
396 * P256 curve. (r = 1 / a mod m)
397 *
398 * r Inverse result.
399 * a Number to invert.
400 */
401#if 0
402/* Mod-2 for the P256 curve. */
403static const uint32_t p256_mod_2[8] = {
404 0xfffffffd,0xffffffff,0xffffffff,0x00000000,
405 0x00000000,0x00000000,0x00000001,0xffffffff,
406};
407//Bit pattern:
408//2 2 2 2 2 2 2 1...1
409//5 5 4 3 2 1 0 9...0 9...1
410//543210987654321098765432109876543210987654321098765432109876543210...09876543210...09876543210
411//111111111111111111111111111111110000000000000000000000000000000100...00000111111...11111111101
412#endif
413static void sp_256_mont_inv_10(sp_digit* r, sp_digit* a)
414{
415 sp_digit t[2*10]; //can be just [10]?
416 int i;
417
418 memcpy(t, a, sizeof(sp_digit) * 10);
419 for (i = 254; i >= 0; i--) {
Denys Vlasenko389329e2021-10-05 13:39:33 +0200420 sp_256_mont_sqr_10(t, t /*, p256_mod, p256_mp_mod*/);
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200421 /*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/
422 if (i >= 224 || i == 192 || (i <= 95 && i != 1))
Denys Vlasenko389329e2021-10-05 13:39:33 +0200423 sp_256_mont_mul_10(t, t, a /*, p256_mod, p256_mp_mod*/);
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200424 }
425 memcpy(r, t, sizeof(sp_digit) * 10);
426}
427
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200428/* Multiply a number by Montogmery normalizer mod modulus (prime).
429 *
430 * r The resulting Montgomery form number.
431 * a The number to convert.
432 */
433static void sp_256_mod_mul_norm_10(sp_digit* r, const sp_digit* a)
434{
Denys Vlasenko12040122021-04-26 20:24:34 +0200435 int64_t t[8];
Denys Vlasenko12040122021-04-26 20:24:34 +0200436 int64_t o;
Denys Vlasenko646e8562021-04-27 13:09:44 +0200437 uint32_t a32;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200438
Denys Vlasenko12040122021-04-26 20:24:34 +0200439 /* 1 1 0 -1 -1 -1 -1 0 */
Denys Vlasenko12040122021-04-26 20:24:34 +0200440 /* 0 1 1 0 -1 -1 -1 -1 */
Denys Vlasenko12040122021-04-26 20:24:34 +0200441 /* 0 0 1 1 0 -1 -1 -1 */
Denys Vlasenko12040122021-04-26 20:24:34 +0200442 /* -1 -1 0 2 2 1 0 -1 */
Denys Vlasenko12040122021-04-26 20:24:34 +0200443 /* 0 -1 -1 0 2 2 1 0 */
Denys Vlasenko12040122021-04-26 20:24:34 +0200444 /* 0 0 -1 -1 0 2 2 1 */
Denys Vlasenko12040122021-04-26 20:24:34 +0200445 /* -1 -1 0 0 0 1 3 2 */
Denys Vlasenko12040122021-04-26 20:24:34 +0200446 /* 1 0 -1 -1 -1 -1 0 3 */
Denys Vlasenko646e8562021-04-27 13:09:44 +0200447 // t[] should be calculated from "a" (converted from 26-bit to 32-bit vector a32[8])
448 // according to the above matrix:
449 //t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6] ;
450 //t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7] ;
451 //t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7] ;
452 //t[3] = 0 - a32[0] - a32[1] + 2*a32[3] + 2*a32[4] + a32[5] - a32[7] ;
453 //t[4] = 0 - a32[1] - a32[2] + 2*a32[4] + 2*a32[5] + a32[6] ;
454 //t[5] = 0 - a32[2] - a32[3] + 2*a32[5] + 2*a32[6] + a32[7] ;
455 //t[6] = 0 - a32[0] - a32[1] + a32[5] + 3*a32[6] + 2*a32[7];
456 //t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3*a32[7];
457 // We can do it "piecemeal" after each a32[i] is known, no need to store entire a32[8] vector:
458
459#define A32 (int64_t)a32
460 a32 = a[0] | (a[1] << 26);
461 t[0] = 0 + A32;
462 t[3] = 0 - A32;
463 t[6] = 0 - A32;
464 t[7] = 0 + A32;
465
466 a32 = (a[1] >> 6) | (a[2] << 20);
467 t[0] += A32 ;
468 t[1] = 0 + A32;
469 t[3] -= A32 ;
470 t[4] = 0 - A32;
471 t[6] -= A32 ;
472
473 a32 = (a[2] >> 12) | (a[3] << 14);
474 t[1] += A32 ;
475 t[2] = 0 + A32;
476 t[4] -= A32 ;
477 t[5] = 0 - A32;
478 t[7] -= A32 ;
479
480 a32 = (a[3] >> 18) | (a[4] << 8);
481 t[0] -= A32 ;
482 t[2] += A32 ;
483 t[3] += 2*A32;
484 t[5] -= A32 ;
485 t[7] -= A32 ;
486
487 a32 = (a[4] >> 24) | (a[5] << 2) | (a[6] << 28);
488 t[0] -= A32 ;
489 t[1] -= A32 ;
490 t[3] += 2*A32;
491 t[4] += 2*A32;
492 t[7] -= A32 ;
493
494 a32 = (a[6] >> 4) | (a[7] << 22);
495 t[0] -= A32 ;
496 t[1] -= A32 ;
497 t[2] -= A32 ;
498 t[3] += A32 ;
499 t[4] += 2*A32;
500 t[5] += 2*A32;
501 t[6] += A32 ;
502 t[7] -= A32 ;
503
504 a32 = (a[7] >> 10) | (a[8] << 16);
505 t[0] -= A32 ;
506 t[1] -= A32 ;
507 t[2] -= A32 ;
508 t[4] += A32 ;
509 t[5] += 2*A32;
510 t[6] += 3*A32;
511
512 a32 = (a[8] >> 16) | (a[9] << 10);
513 t[1] -= A32 ;
514 t[2] -= A32 ;
515 t[3] -= A32 ;
516 t[5] += A32 ;
517 t[6] += 2*A32;
518 t[7] += 3*A32;
519#undef A32
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200520
Denys Vlasenko12040122021-04-26 20:24:34 +0200521 t[1] += t[0] >> 32; t[0] &= 0xffffffff;
522 t[2] += t[1] >> 32; t[1] &= 0xffffffff;
523 t[3] += t[2] >> 32; t[2] &= 0xffffffff;
524 t[4] += t[3] >> 32; t[3] &= 0xffffffff;
525 t[5] += t[4] >> 32; t[4] &= 0xffffffff;
526 t[6] += t[5] >> 32; t[5] &= 0xffffffff;
527 t[7] += t[6] >> 32; t[6] &= 0xffffffff;
528 o = t[7] >> 32; t[7] &= 0xffffffff;
529 t[0] += o;
530 t[3] -= o;
531 t[6] -= o;
532 t[7] += o;
Denys Vlasenko840ae692021-04-27 13:31:26 +0200533 t[1] += t[0] >> 32; //t[0] &= 0xffffffff;
534 t[2] += t[1] >> 32; //t[1] &= 0xffffffff;
535 t[3] += t[2] >> 32; //t[2] &= 0xffffffff;
536 t[4] += t[3] >> 32; //t[3] &= 0xffffffff;
537 t[5] += t[4] >> 32; //t[4] &= 0xffffffff;
538 t[6] += t[5] >> 32; //t[5] &= 0xffffffff;
539 t[7] += t[6] >> 32; //t[6] &= 0xffffffff; - (uint32_t)t[i] casts below accomplish masking
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200540
Denys Vlasenko840ae692021-04-27 13:31:26 +0200541 r[0] = 0x3ffffff & ((sp_digit)((uint32_t)t[0]));
542 r[1] = 0x3ffffff & ((sp_digit)((uint32_t)t[0] >> 26) | ((sp_digit)t[1] << 6));
543 r[2] = 0x3ffffff & ((sp_digit)((uint32_t)t[1] >> 20) | ((sp_digit)t[2] << 12));
544 r[3] = 0x3ffffff & ((sp_digit)((uint32_t)t[2] >> 14) | ((sp_digit)t[3] << 18));
545 r[4] = 0x3ffffff & ((sp_digit)((uint32_t)t[3] >> 8) | ((sp_digit)t[4] << 24));
546 r[5] = 0x3ffffff & ((sp_digit)((uint32_t)t[4] >> 2));
547 r[6] = 0x3ffffff & ((sp_digit)((uint32_t)t[4] >> 28) | ((sp_digit)t[5] << 4));
548 r[7] = 0x3ffffff & ((sp_digit)((uint32_t)t[5] >> 22) | ((sp_digit)t[6] << 10));
549 r[8] = 0x3ffffff & ((sp_digit)((uint32_t)t[6] >> 16) | ((sp_digit)t[7] << 16));
550 r[9] = ((sp_digit)((uint32_t)t[7] >> 10));
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200551}
552
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200553/* Map the Montgomery form projective co-ordinate point to an affine point.
554 *
555 * r Resulting affine co-ordinate point.
556 * p Montgomery form projective co-ordinate point.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200557 */
Denys Vlasenko6381f3d2021-04-26 17:41:43 +0200558static void sp_256_map_10(sp_point* r, sp_point* p)
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200559{
Denys Vlasenko12040122021-04-26 20:24:34 +0200560 sp_digit t1[2*10];
561 sp_digit t2[2*10];
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200562
Denys Vlasenko12040122021-04-26 20:24:34 +0200563 sp_256_mont_inv_10(t1, p->z);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200564
Denys Vlasenko389329e2021-10-05 13:39:33 +0200565 sp_256_mont_sqr_10(t2, t1 /*, p256_mod, p256_mp_mod*/);
566 sp_256_mont_mul_10(t1, t2, t1 /*, p256_mod, p256_mp_mod*/);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200567
Denys Vlasenko12040122021-04-26 20:24:34 +0200568 /* x /= z^2 */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200569 sp_256_mont_mul_10(r->x, p->x, t2 /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200570 memset(r->x + 10, 0, sizeof(r->x) / 2);
Denys Vlasenko389329e2021-10-05 13:39:33 +0200571 sp_256_mont_reduce_10(r->x /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200572 /* Reduce x to less than modulus */
Denys Vlasenko9a40be42021-04-26 21:58:04 +0200573 if (sp_256_cmp_10(r->x, p256_mod) >= 0)
574 sp_256_sub_10(r->x, r->x, p256_mod);
Denys Vlasenko12040122021-04-26 20:24:34 +0200575 sp_256_norm_10(r->x);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200576
Denys Vlasenko12040122021-04-26 20:24:34 +0200577 /* y /= z^3 */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200578 sp_256_mont_mul_10(r->y, p->y, t1 /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200579 memset(r->y + 10, 0, sizeof(r->y) / 2);
Denys Vlasenko389329e2021-10-05 13:39:33 +0200580 sp_256_mont_reduce_10(r->y /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200581 /* Reduce y to less than modulus */
Denys Vlasenko9a40be42021-04-26 21:58:04 +0200582 if (sp_256_cmp_10(r->y, p256_mod) >= 0)
583 sp_256_sub_10(r->y, r->y, p256_mod);
Denys Vlasenko12040122021-04-26 20:24:34 +0200584 sp_256_norm_10(r->y);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200585
Denys Vlasenko12040122021-04-26 20:24:34 +0200586 memset(r->z, 0, sizeof(r->z));
587 r->z[0] = 1;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200588}
589
590/* Double the Montgomery form projective point p.
591 *
592 * r Result of doubling point.
593 * p Point to double.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200594 */
Denys Vlasenko6381f3d2021-04-26 17:41:43 +0200595static void sp_256_proj_point_dbl_10(sp_point* r, sp_point* p)
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200596{
Denys Vlasenko12040122021-04-26 20:24:34 +0200597 sp_digit t1[2*10];
598 sp_digit t2[2*10];
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200599
Denys Vlasenko12040122021-04-26 20:24:34 +0200600 /* Put point to double into result */
601 if (r != p)
602 *r = *p; /* struct copy */
Denys Vlasenko4d3a5c12021-04-26 15:21:38 +0200603
Denys Vlasenkoe7305052021-10-05 13:30:48 +0200604 if (r->infinity) /* If infinity, don't double */
605 return;
606
Denys Vlasenko12040122021-04-26 20:24:34 +0200607 /* T1 = Z * Z */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200608 sp_256_mont_sqr_10(t1, r->z /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200609 /* Z = Y * Z */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200610 sp_256_mont_mul_10(r->z, r->y, r->z /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200611 /* Z = 2Z */
612 sp_256_mont_dbl_10(r->z, r->z, p256_mod);
613 /* T2 = X - T1 */
614 sp_256_mont_sub_10(t2, r->x, t1, p256_mod);
615 /* T1 = X + T1 */
616 sp_256_mont_add_10(t1, r->x, t1, p256_mod);
617 /* T2 = T1 * T2 */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200618 sp_256_mont_mul_10(t2, t1, t2 /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200619 /* T1 = 3T2 */
620 sp_256_mont_tpl_10(t1, t2, p256_mod);
621 /* Y = 2Y */
622 sp_256_mont_dbl_10(r->y, r->y, p256_mod);
623 /* Y = Y * Y */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200624 sp_256_mont_sqr_10(r->y, r->y /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200625 /* T2 = Y * Y */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200626 sp_256_mont_sqr_10(t2, r->y /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200627 /* T2 = T2/2 */
628 sp_256_div2_10(t2, t2, p256_mod);
629 /* Y = Y * X */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200630 sp_256_mont_mul_10(r->y, r->y, r->x /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200631 /* X = T1 * T1 */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200632 sp_256_mont_mul_10(r->x, t1, t1 /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200633 /* X = X - Y */
634 sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod);
635 /* X = X - Y */
636 sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod);
637 /* Y = Y - X */
638 sp_256_mont_sub_10(r->y, r->y, r->x, p256_mod);
639 /* Y = Y * T1 */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200640 sp_256_mont_mul_10(r->y, r->y, t1 /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200641 /* Y = Y - T2 */
642 sp_256_mont_sub_10(r->y, r->y, t2, p256_mod);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200643}
644
645/* Add two Montgomery form projective points.
646 *
647 * r Result of addition.
648 * p Frist point to add.
649 * q Second point to add.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200650 */
Denys Vlasenko6381f3d2021-04-26 17:41:43 +0200651static void sp_256_proj_point_add_10(sp_point* r, sp_point* p, sp_point* q)
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200652{
Denys Vlasenko12040122021-04-26 20:24:34 +0200653 sp_digit t1[2*10];
654 sp_digit t2[2*10];
655 sp_digit t3[2*10];
656 sp_digit t4[2*10];
657 sp_digit t5[2*10];
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200658
Denys Vlasenko12040122021-04-26 20:24:34 +0200659 /* Ensure only the first point is the same as the result. */
660 if (q == r) {
661 sp_point* a = p;
662 p = q;
663 q = a;
664 }
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200665
Denys Vlasenko12040122021-04-26 20:24:34 +0200666 /* Check double */
667 sp_256_sub_10(t1, p256_mod, q->y);
668 sp_256_norm_10(t1);
669 if (sp_256_cmp_equal_10(p->x, q->x)
670 && sp_256_cmp_equal_10(p->z, q->z)
671 && (sp_256_cmp_equal_10(p->y, q->y) || sp_256_cmp_equal_10(p->y, t1))
672 ) {
673 sp_256_proj_point_dbl_10(r, p);
674 }
675 else {
676 sp_point tp;
677 sp_point *v;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200678
Denys Vlasenko12040122021-04-26 20:24:34 +0200679 v = r;
680 if (p->infinity | q->infinity) {
681 memset(&tp, 0, sizeof(tp));
682 v = &tp;
683 }
Denys Vlasenko772e1872021-04-26 17:25:27 +0200684
Denys Vlasenko12040122021-04-26 20:24:34 +0200685 *r = p->infinity ? *q : *p; /* struct copy */
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200686
Denys Vlasenko12040122021-04-26 20:24:34 +0200687 /* U1 = X1*Z2^2 */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200688 sp_256_mont_sqr_10(t1, q->z /*, p256_mod, p256_mp_mod*/);
689 sp_256_mont_mul_10(t3, t1, q->z /*, p256_mod, p256_mp_mod*/);
690 sp_256_mont_mul_10(t1, t1, v->x /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200691 /* U2 = X2*Z1^2 */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200692 sp_256_mont_sqr_10(t2, v->z /*, p256_mod, p256_mp_mod*/);
693 sp_256_mont_mul_10(t4, t2, v->z /*, p256_mod, p256_mp_mod*/);
694 sp_256_mont_mul_10(t2, t2, q->x /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200695 /* S1 = Y1*Z2^3 */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200696 sp_256_mont_mul_10(t3, t3, v->y /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200697 /* S2 = Y2*Z1^3 */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200698 sp_256_mont_mul_10(t4, t4, q->y /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200699 /* H = U2 - U1 */
700 sp_256_mont_sub_10(t2, t2, t1, p256_mod);
701 /* R = S2 - S1 */
702 sp_256_mont_sub_10(t4, t4, t3, p256_mod);
703 /* Z3 = H*Z1*Z2 */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200704 sp_256_mont_mul_10(v->z, v->z, q->z /*, p256_mod, p256_mp_mod*/);
705 sp_256_mont_mul_10(v->z, v->z, t2 /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200706 /* X3 = R^2 - H^3 - 2*U1*H^2 */
Denys Vlasenko389329e2021-10-05 13:39:33 +0200707 sp_256_mont_sqr_10(v->x, t4 /*, p256_mod, p256_mp_mod*/);
708 sp_256_mont_sqr_10(t5, t2 /*, p256_mod, p256_mp_mod*/);
709 sp_256_mont_mul_10(v->y, t1, t5 /*, p256_mod, p256_mp_mod*/);
710 sp_256_mont_mul_10(t5, t5, t2 /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200711 sp_256_mont_sub_10(v->x, v->x, t5, p256_mod);
712 sp_256_mont_dbl_10(t1, v->y, p256_mod);
713 sp_256_mont_sub_10(v->x, v->x, t1, p256_mod);
714 /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
715 sp_256_mont_sub_10(v->y, v->y, v->x, p256_mod);
Denys Vlasenko389329e2021-10-05 13:39:33 +0200716 sp_256_mont_mul_10(v->y, v->y, t4 /*, p256_mod, p256_mp_mod*/);
717 sp_256_mont_mul_10(t5, t5, t3 /*, p256_mod, p256_mp_mod*/);
Denys Vlasenko12040122021-04-26 20:24:34 +0200718 sp_256_mont_sub_10(v->y, v->y, t5, p256_mod);
719 }
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200720}
721
722/* Multiply the point by the scalar and return the result.
723 * If map is true then convert result to affine co-ordinates.
724 *
725 * r Resulting point.
726 * g Point to multiply.
727 * k Scalar to multiply by.
Denys Vlasenko03ab2a92021-04-26 14:55:46 +0200728 * map Indicates whether to convert result to affine.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200729 */
730static void sp_256_ecc_mulmod_10(sp_point* r, const sp_point* g, const sp_digit* k /*, int map*/)
731{
Denys Vlasenko12040122021-04-26 20:24:34 +0200732 enum { map = 1 }; /* we always convert result to affine coordinates */
733 sp_point t[3];
734 sp_digit n;
735 int i;
736 int c, y;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200737
Denys Vlasenko12040122021-04-26 20:24:34 +0200738 memset(t, 0, sizeof(t));
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200739
Denys Vlasenko12040122021-04-26 20:24:34 +0200740 /* t[0] = {0, 0, 1} * norm */
741 t[0].infinity = 1;
742 /* t[1] = {g->x, g->y, g->z} * norm */
743 sp_256_mod_mul_norm_10(t[1].x, g->x);
744 sp_256_mod_mul_norm_10(t[1].y, g->y);
745 sp_256_mod_mul_norm_10(t[1].z, g->z);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200746
Denys Vlasenko12040122021-04-26 20:24:34 +0200747 i = 9;
748 c = 22;
749 n = k[i--] << (26 - c);
750 for (; ; c--) {
751 if (c == 0) {
752 if (i == -1)
753 break;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200754
Denys Vlasenko12040122021-04-26 20:24:34 +0200755 n = k[i--];
756 c = 26;
757 }
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200758
Denys Vlasenko12040122021-04-26 20:24:34 +0200759 y = (n >> 25) & 1;
760 n <<= 1;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200761
Denys Vlasenko12040122021-04-26 20:24:34 +0200762 sp_256_proj_point_add_10(&t[y^1], &t[0], &t[1]);
763 memcpy(&t[2], &t[y], sizeof(sp_point));
764 sp_256_proj_point_dbl_10(&t[2], &t[2]);
765 memcpy(&t[y], &t[2], sizeof(sp_point));
766 }
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200767
Denys Vlasenko12040122021-04-26 20:24:34 +0200768 if (map)
769 sp_256_map_10(r, &t[0]);
770 else
771 memcpy(r, &t[0], sizeof(sp_point));
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200772
Denys Vlasenko12040122021-04-26 20:24:34 +0200773 memset(t, 0, sizeof(t)); //paranoia
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200774}
775
776/* Multiply the base point of P256 by the scalar and return the result.
777 * If map is true then convert result to affine co-ordinates.
778 *
779 * r Resulting point.
780 * k Scalar to multiply by.
Denys Vlasenko03ab2a92021-04-26 14:55:46 +0200781 * map Indicates whether to convert result to affine.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200782 */
783static void sp_256_ecc_mulmod_base_10(sp_point* r, sp_digit* k /*, int map*/)
784{
Denys Vlasenko39a3ef52021-04-27 01:31:51 +0200785 /* Since this function is called only once, save space:
786 * don't have "static const sp_point p256_base = {...}",
787 * it would have more zeros than data.
788 */
Denys Vlasenko48a18d12021-04-27 12:24:21 +0200789 static const uint8_t p256_base_bin[] = {
790 /* x (big-endian) */
791 0x6b,0x17,0xd1,0xf2,0xe1,0x2c,0x42,0x47,0xf8,0xbc,0xe6,0xe5,0x63,0xa4,0x40,0xf2,0x77,0x03,0x7d,0x81,0x2d,0xeb,0x33,0xa0,0xf4,0xa1,0x39,0x45,0xd8,0x98,0xc2,0x96,
792 /* y */
793 0x4f,0xe3,0x42,0xe2,0xfe,0x1a,0x7f,0x9b,0x8e,0xe7,0xeb,0x4a,0x7c,0x0f,0x9e,0x16,0x2b,0xce,0x33,0x57,0x6b,0x31,0x5e,0xce,0xcb,0xb6,0x40,0x68,0x37,0xbf,0x51,0xf5,
Denys Vlasenko646e8562021-04-27 13:09:44 +0200794 /* z will be set to 1, infinity flag to "false" */
Denys Vlasenko39a3ef52021-04-27 01:31:51 +0200795 };
796 sp_point p256_base;
797
Denys Vlasenko48a18d12021-04-27 12:24:21 +0200798 sp_256_point_from_bin2x32(&p256_base, p256_base_bin);
Denys Vlasenko39a3ef52021-04-27 01:31:51 +0200799
Denys Vlasenko12040122021-04-26 20:24:34 +0200800 sp_256_ecc_mulmod_10(r, &p256_base, k /*, map*/);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200801}
802
803/* Multiply the point by the scalar and serialize the X ordinate.
804 * The number is 0 padded to maximum size on output.
805 *
806 * priv Scalar to multiply the point by.
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200807 * pub2x32 Point to multiply.
808 * out32 Buffer to hold X ordinate.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200809 */
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200810static void sp_ecc_secret_gen_256(const sp_digit priv[10], const uint8_t *pub2x32, uint8_t* out32)
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200811{
Denys Vlasenko12040122021-04-26 20:24:34 +0200812 sp_point point[1];
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200813
814#if FIXED_PEER_PUBKEY
Denys Vlasenko12040122021-04-26 20:24:34 +0200815 memset((void*)pub2x32, 0x55, 64);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200816#endif
Denys Vlasenko12040122021-04-26 20:24:34 +0200817 dump_hex("peerkey %s\n", pub2x32, 32); /* in TLS, this is peer's public key */
818 dump_hex(" %s\n", pub2x32 + 32, 32);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200819
Denys Vlasenko12040122021-04-26 20:24:34 +0200820 sp_256_point_from_bin2x32(point, pub2x32);
821 dump_hex("point->x %s\n", point->x, sizeof(point->x));
822 dump_hex("point->y %s\n", point->y, sizeof(point->y));
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200823
Denys Vlasenko12040122021-04-26 20:24:34 +0200824 sp_256_ecc_mulmod_10(point, point, priv);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200825
Denys Vlasenkoe7305052021-10-05 13:30:48 +0200826 sp_256_to_bin_10(point->x, out32);
Denys Vlasenko12040122021-04-26 20:24:34 +0200827 dump_hex("out32: %s\n", out32, 32);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200828}
829
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200830/* Generates a scalar that is in the range 1..order-1. */
831#define SIMPLIFY 1
832/* Add 1 to a. (a = a + 1) */
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200833static void sp_256_add_one_10(sp_digit* a)
834{
Denys Vlasenko12040122021-04-26 20:24:34 +0200835 a[0]++;
836 sp_256_norm_10(a);
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200837}
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200838static void sp_256_ecc_gen_k_10(sp_digit k[10])
839{
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200840#if !SIMPLIFY
841 /* The order of the curve P256 minus 2. */
842 static const sp_digit p256_order2[10] = {
843 0x063254f,0x272b0bf,0x1e84f3b,0x2b69c5e,0x3bce6fa,
844 0x3ffffff,0x3ffffff,0x00003ff,0x3ff0000,0x03fffff,
845 };
846#endif
847 uint8_t buf[32];
848
849 for (;;) {
850 tls_get_random(buf, sizeof(buf));
851#if FIXED_SECRET
852 memset(buf, 0x77, sizeof(buf));
853#endif
Denys Vlasenkoe7305052021-10-05 13:30:48 +0200854 sp_256_from_bin_10(k, buf);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200855#if !SIMPLIFY
856 if (sp_256_cmp_10(k, p256_order2) < 0)
857 break;
858#else
859 /* non-loopy version (and not needing p256_order2[]):
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200860 * if most-significant word seems that k can be larger
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200861 * than p256_order2, fix it up:
862 */
863 if (k[9] >= 0x03fffff)
864 k[9] = 0x03ffffe;
865 break;
866#endif
867 }
868 sp_256_add_one_10(k);
869#undef SIMPLIFY
870}
871
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200872/* Makes a random EC key pair. */
873static void sp_ecc_make_key_256(sp_digit privkey[10], uint8_t *pubkey)
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200874{
875 sp_point point[1];
876
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200877 sp_256_ecc_gen_k_10(privkey);
878 sp_256_ecc_mulmod_base_10(point, privkey);
Denys Vlasenkoe7305052021-10-05 13:30:48 +0200879 sp_256_to_bin_10(point->x, pubkey);
880 sp_256_to_bin_10(point->y, pubkey + 32);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200881
882 memset(point, 0, sizeof(point)); //paranoia
883}
884
885void FAST_FUNC curve_P256_compute_pubkey_and_premaster(
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200886 uint8_t *pubkey2x32, uint8_t *premaster32,
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200887 const uint8_t *peerkey2x32)
888{
889 sp_digit privkey[10];
890
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200891 sp_ecc_make_key_256(privkey, pubkey2x32);
892 dump_hex("pubkey: %s\n", pubkey2x32, 32);
893 dump_hex(" %s\n", pubkey2x32 + 32, 32);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200894
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200895 /* Combine our privkey and peer's public key to generate premaster */
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200896 sp_ecc_secret_gen_256(privkey, /*x,y:*/peerkey2x32, premaster32);
897 dump_hex("premaster: %s\n", premaster32, 32);
898}